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Introduction 
The need for high-throughput sample acquisition and automation 

in flow cytometry creates demand for new methods for analytical 

standardization and for reducing sources of variability. Sources 

of variation in flow cytometry experiments include differences in 

sample preparation, user uncertainty, differences in biological 

samples, cell analyzer performance, and instrument acquisition 

settings [1]. Additionally, differences in how users gate 

populations and analyze the same data within an experiment are 

major sources of variability. Researchers often debate about the 

best gating strategies, and variations in such strategies may often 

lead to poor assay standardization. Standardization is crucial for 

obtaining reproducible results and ensuring that experimental 

data support research conclusions.

Flow cytometry provides statistical analysis of populations at 

the single-cell level and is thus quantitative by design. However, 

the analyses can be subject to individual gating differences 

by relying on user assumptions to draw gates on dot plots 

and histograms that may lack clear and distinct boundaries 

between populations [2]. The emergence of imaging-enhanced 

flow cytometers enables users to visualize their samples during 

acquisition, verify the accuracy of their gating strategies, and 

support their results with reliable documentation for publication 

purposes. Direct visual observation of events from images in a 

population can reduce ambiguity and variability in data attributed 

to differences between users.

Attune CytPix Flow Cytometer
The Invitrogen™ Attune™ NxT Flow Cytometer is a clog-resistant, 

workhorse cell analyzer that can be configured with up to four 

spatially separated lasers for analysis of up to 14 fluorescence 

parameters. Its unique acoustic-assisted hydrodynamic focusing 

feature enables sample flow rates up to 1,000 µL/min and 

acquisition speeds up to 35,000 events/sec, making it one of the 

fastest benchtop cell analyzers on the market. The Invitrogen™ 

Attune™ CytPix™ Flow Cytometer comes equipped with all the 

features of the Attune NxT Flow Cytometer. In addition, it has a 

high-speed bright-field camera that records image events as they 

pass through the flow cell to verify that cell populations consist 

of single cells and to establish cell morphology. The Attune 

CytPix Flow Cytometer captures up to 6,000 high-resolution 

images/second and particles as small as 0.8 μm. A variety of 

particles and cell types can be reliably imaged, analyzed, and 

correlated to their respective events on bivariate plots, providing 

flexibility for developing a wealth of biological applications.

Invitrogen™ Attune™ Cytometric Software v6.0 empowers users 

of the Attune CytPix Flow Cytometer with automated image 

analysis capabilities. Using this tool, the image data are translated 

into digital data that captures measurements of particles 

or cells. Users can correlate spatial and cell morphological 

characteristics with cell phenotypes and augment their 

conventional flow cytometry data with image-derived datasets. 

These datasets allow users to better understand their samples. 

Attune Cytometric Software v6.0 automates data extraction from 

images, providing label-free quantitative parameters for profiling 

size measurements, population-level statistics, population 

identification, and particle enumeration. These image parameters 

can then be plotted against conventional flow parameters and 

back-gated with any image from a single event onto the flow 

cytometry standard (FCS) data. 

https://www.thermofisher.com/ca/en/home/life-science/cell-analysis/flow-cytometry/flow-cytometers/attune-nxt-flow-cytometer/models/cytpix.html


Automated image analysis for flow cytometry
The high-speed camera in the Attune CytPix Flow Cytometer 

has a 10x effective magnification capability, enabling the capture 

of hundreds of 16-bit bright-field images up to 248 x 248 pixels 

in microseconds for high-throughput pixel data extraction. 

Machine learning algorithms are used to rapidly identify an 

object of interest within each of those images and perform 

image segmentation for classifying each pixel, resulting in 

a binary image overlay known as a mask [3]. Objects in the 

image field of view are segmented to classify pixels as part of 

an object or not (Figure 1A). Masks are used to annotate every 

pixel in an image and distinguish features within an object. They 

provide visual confirmation that an image was processed for 

particle characterization. In the software, a mask appears as 

an outline around the particle, denoting the edge of the object 

with the background, while the number of centroids within a 

mask is proportional to the number of objects in the field of view 

(Figure 1B). During software development, our subject matter 

experts manually annotated images to provide ground-truth data 

to ensure the prediction models provide accurate quantitative 

measurements using the masks.

Image processing is an operation that can identify specific 

patterns in an image and transform image data into digital data 

that capture the measurements about the identified patterns 

and objects. The digital data are then compiled for each image 

to generate derived parameters that can then be correlated 

with the associated FCS file event data. A broad array of 

image-processing features provide particle or cell morphology 

measurements that are displayed as parameters for histograms 

and dot plots, similar to scatter and fluorescence parameters. 

The light and dark pixels in an image are assigned intensity 

values and compared to the normalized background intensity and 

thresholding values to create image-based measurements [4].

The image-processing features enable accurate label‑free 

analysis from images and quantitative image-based 

measurements to automate size measurements, population-level 

statistics, population identification, and particle enumeration. 

For example, the software can recognize and count the number 

of beads or cells within an image to inform more accurate 

singlet gating. Image-derived statistics are generated for any 

specified population and can be correlated with marker statistics 

at the population level to further characterize and define cell 

populations. Users no longer need to make assumptions about 

cell morphology because the image analysis software can 

calculate measurements relaying size, shape, and intracellular 

complexity from individual full-resolution images. The images can 

also be used to inform and verify gating accuracy for users of any 

experience level. Automated image analysis eliminates manual 

annotation of images and reduces user analysis bias when 

quantifying morphology. 

How to use the image-derived parameters 
The image processing parameters enable users to verify image 

processing, set up image data for downstream analysis, and 

find metrics that resolve objects within populations of interest. 

Divided into five feature categories—system, object, intensity, 

pixel, and shape—the parameters provide quality control for 

image-based analysis and morphology measurements from 

each event in an image (Table 1). In the image analysis workflow, 

several parameters can be used to set up an experiment to 

ensure quality control and accurate analysis after the images are 

processed. The “IsProcessed” and “IsOnBorder” parameters 

ensure that all events are captured by the Attune CytPix 

camera and within the image field of view (Figure 1C). Gates 

drawn in the “PseudoDiameterMicrons” parameter display 

statistics based on the diameter of each particle or cell in that 

population. Similar to conventional flow cytometry gating, the 

“PseudoDiameterMicrons” enables users to exclude suspected 

debris, dead cells, or events of dissimilar size at the population 

level. “ParticleCount” parameter provides an exact readout of 

the number of particles or cells in each event, removing the 

potentially erroneous subjective nature of gating out doublets 

using conventional approaches of doublet discrimination such as 

side scatter area (SSC-A) and height (Figure 1D).
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Figure 1. Image-processing elements and parameters. (A) Objects in images analyzed by 
the software are displayed with masks on the borders and centroids to determine the centers of 
the circular objects. (B) Centroids in circular objects assist in determining number of particles in 
an image. (C) Quality control features allow exclusion of objects not in the field of view prior to 
analysis. Users will acknowledge image analysis for objects located within the borders (left) and 
exclude images with objects located on the border (right). (D) Image-derived parameters can be 
used to gate singlet from aggregate and doublet events in images.

A

B

C
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Table 1. Examples of image-derived parameters. 

Display name Description  Notes

System features

IsOnBorder On border Indicates that one or more objects intersects with the field of 
view of the image.

IsProcessed Processed
Indicates that the image was processed. This is generated 
when the image processing FCS file is loaded and merged 
with the raw FCS file data.

Pixel features

Pixel count Number pixels Provides pixel count.

Object features

ParticleCount  Number of cells / particles within the identified object  Used for gating singlets from aggregates or doublets.

Shape features

CircularityPercent
Measure of roundness as determined by the ratio of the 
perimeter to area of the object
Circularity percent = 100 / PerimeterToArea 

A perfectly circular object = 100. For round cells, values falling 
below 80 often start to indicate dead or dying cells.

PseudoDiameterMicrons  Diameter of circle with area equal to area of the object 
D = 2 * sqrt(Object.Area_um2/pi)

This value is calculated by comparing the diameter of the 
object to the diameter of a circle with the same area. Can be 
used to calculate the area of the object; 1 pixel = 0.3 µm.

EccentricityPercent
Eccentricity of an ellipse = 
100 * sqrt (1-ShortAxisMicrons ^2 / 
LongAxisMicrons^2)

Eccentricity of a perfect circle = 0; eccentricity of a 
parabola = 1; beads have lower eccentricity than cells.

Intensity features

EntropyIntensity Entropy of intensity distribution of all pixels within 
an object 

Healthy cells: ~6–7; sick/dead/dying cells: ~8. The highest 
values tend to indicate shriveled, dead cells. Healthy “ruffled” 
cells with texture may have higher values. Low entropy events 
are also not typically cells.

SkewnessIntensity  Skewness of intensity distribution of all pixels within 
an object 

Unhealthy and dead cells tend to be either very high or very 
low on the range. Textured cells often have higher skewness 
intensity.

KurtosisIntensity  Peakedness of intensity distribution of all pixels within 
an object 

Healthy cells: ~0. Useful when attempting to differentiate cells 
attached to beads from just beads or just cells. 

CVNormIntensity 100 * StandardDeviationIntensity / AverageIntensity Indicates increased pixel intensity compared to 
the background.
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To demonstrate how the Attune CytPix Flow Cytometer can 

be used to reduce gating variability, a group of Attune CytPix 

Flow Cytometer users were asked to gate cells in an apoptosis 

experiment based on size and single cells with and without the 

image‑derived parameters. Camptothecin-treated Jurkat cells 

were dual-stained with Annexin V (AV) and propidium iodide (PI) 

to positively distinguish apoptotic populations. The Attune CytPix 

cytometer images enable users to visualize viable, apoptotic, and 

dead cells, while the addition of image processing automates 

population identification prior to user gating. The potential of 

these new capabilities suggest that gating standardization in 

a multiuser study is possible. Previous multiuser studies have 

reported that diagrammatical protocols may reduce user analysis 

variation, so detailed protocols were provided to the focus group 

to improve standardization of how the analysis was performed [2].

Materials and methods
Log-stage Jurkat cells (T cell lymphoma) were treated with 

10 µM camptothecin (MilliporeSigma) for 4 hours. Following 

this treatment, cells were stained with the Invitrogen™ Dead 

Cell Apoptosis Kits with Annexin V for Flow Cytometry, with 

Invitrogen™ Alexa Fluor 488™ Anti-Annexin V (AV) and propidium 

iodide (PI) (Cat. No. V13241) and Invitrogen™ Hoechst 33342 

nucleic acid stain. Cell data were acquired from a 96-well 

U-bottom plate using the Invitrogen™ Attune™ CytPix Flow 

Cytometer instrument and the Invitrogen™ CytKick™ Max 

Autosampler at a sample injection rate of 100 µL/minute. For 

each sample, 30,000 events were collected in “All Events” mode 

and 7,000 images were photographed. Processing of all images 

was completed using the “Cells Full Resolution” mode on Attune 

Cytometric Software.

Focus group study
First method: Gating without image analysis
1.	 Nucleated cells/debris exclusion gate

a.	 Parent population: Processed

b.	 To remove free apoptotic bodies, use either a debris 
exclusion gate or a nucleated cell gate (using Hoechst 
stain, in VL1 channel).

2.	 Single cells gate

a.	 Parent population: Nucleated cells (drawn in step 1, 
above), or processed

b.	 This plot is pre-populated; adjust gate as needed or create 
a new gate (as shown in Figure 2A).

3.	 AV/PI bivariate plot

a.	 Parent population: Singlet gate (drawn in step 2, above)

b.	 This plot is already populated; adjust gate position.

Second method: Gating with image analysis
1.	 Size exclusion gate of cells within an 8–25 µm range 

a.	 Parent population: Processed

b.	 A histogram plot using the “PseudoDiameterMicrons” 
parameter is present (as shown in Figure 2B). Adjust the 
gate minimum to 8 µm and the gate maximum to 25 µm. 
It is recommended to use the customized option by 
right‑clicking on the gate and choosing “customize” to set 
this numerically instead of “by eye”.

2.	 Single cell gating where “ParticleCount” = 1

a.	 Parent population: The 8–25 µm size exclusion gate 
(adjusted in step 1)

b.	 Adjust the pre-populated histogram for this parameter.

3.	  AV/PI bivariate plot

a.	 Parent population: Singlet gate (drawn in step 2)

b.	 This plot is already populated; adjust gate position.
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Figure 2. Gating strategy using automated image analysis requires less user subjectivity. Conventional flow cytometry scatter methods were 
used for excluding small events and doublets/aggregates. (A) Camptothecin-induced apoptotic Jurkat cells were stained with Annexin V using the 
Dead Cell Apoptosis kit and with Hoechst stain. All image events were processed by the software and within the borders. Users excluded low SSC-A 
events, suspected apobodies and debris, by creating a rectangular nucleated gate for Hoechst dye–stained cells. Suspected doublets were chosen 
from the nucleated gate with SSC-H/SSC-A bivariate plot to calculate statistics for apoptotic populations. (B) All image events were processed by 
the software and within the borders. Users excluded small events likely to be apobodies and debris using gate customization settings to create a 
SizeGate for events greater than 8 µm. The users drew a gate around “1” to denote singlets. The AISinglets gate allowed users to calculate statistics 
for apoptotic cell. For both (A) and (B) apoptotic cells (Annexin V+/PI–), dead apoptotic (Annexin V+/PI+), live healthy (Annexin V–/PI–) and dead 
(Annexin V–/PI+) populations were delineated using Annexin V, Alexa Fluor 488 dye, and propidium iodide staining for dead cells. 

A

B

Results 
A focus group study consisting of eight flow cytometry users 

with various experience levels was conducted to challenge 

the learning model’s robustness for standardizing gating 

strategy. Half of the participants were either inexperienced in 

using the Attune Cytometric Software or non-experienced flow 

cytometry users.

Participants were provided with two sets of identical files (with 

each file containing three samples) and written instructions for 

creating gating hierarchies using conventional flow parameters 

and image-derived parameters.  

To set up the analysis in each workflow, the participants 

created a hierarchy starting with size exclusion and singlet 

gating. To ensure that the same data would be used for both 

analysis methods, the image files for both methods were 

processed. All events were gated on the “IsOnBorder”- and 

“IsProcessed”-derived parameters as 0 and 1, respectively. 

These parameters ensure that only events from processed 

images appear in daughter gates. For the first analysis method, 

the participants used conventional parameters where they could 

use manually drawn gates to remove apoptotic bodies and refine 

the gate to include nucleated cells that appear high for SSC-A 

and Hoechst stain (Figure 2A). After setting the single cells gate 

and quadrant gating, they could verify their gating accuracy using 

representative images from the Attune CytPix Flow Cytometer. 

For the image analysis–assisted method, the 

“PseudoDiameterMicrons” parameter was used to exclude 

apoptotic bodies. With predictions from the learning model, 

the “PseudoDiameterMicrons” parameter represents a more 

accurate measurement compared to scatter. A simple gate 

shown in Figure 2B excludes events smaller than 8 μm and larger 

than 25 μm. For the “ParticleCount” parameter, participants set 

a histogram gate around value “1” to denote that only images 

with single cells would be included in the analysis, resulting in 

exclusion of events most likely to be debris or apoptotic bodies.
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A Apoptotic bodies Nucleated

The consistency in large diameter gate (Figure 3B) suggests 

that automated image analysis provides accurate detection of 

singlet and intact cells compared to scatter and fluorescence 

properties used to draw the nucleated gate (Figure 3A). Even 

though the pseudodiameter gate does not specify singlet 

detection particles that are not contiguous, they are most likely 

excluded. The fluorescence parameter employing Hoechst 

stain was not used for the image analysis–assisted method and 

demonstrates that this method does not require fluorescence, 

suggesting this channel could be utilized for other stains. 

Using the image-derived parameters for size exclusion and single 

cells enables more consistency in gating decisions across users 

(Figure 4A) and reduces average variation within the experiment 

(Figure 4B). The image analysis method reduced the average 

coefficient of variation (CV) by at least 78% for the populations 

in upstream gating. The representative images from nucleated 

and single cell populations acquired using conventional flow 

cytometry parameters suggest that debris and doublets were 

gated out (Figure 4C). However, the average variation across 

users and samples remained higher compared to image-derived 

parameters for the downstream gating hierarchies (Figure 4D). 

Unsurprisingly, the results suggest that there was user variation 

across all populations of interest, even when analyzing 

identical files. Images for each quadrant population were highly 

representative of apoptotic, dead, dead apoptotic, and live 

healthy cells (Figures 4E and 4F). 

Figure 3. Automated image feature provides consistent and relevant gating options. (A) Size exclusion gating excludes apparently smaller events 
as low SSC-A with Hoechst stain events were distributed. The nucleated population represents more diverse events including dead cells, doublets, 
and debris, as shown in images. (B) Size gate for automated image analysis–assisted gating strategy provides distinction between populations based 
on diameter. “Small diameter” gate denotes particles consistently smaller than 8 µm; “Large diameter” population is larger than 8 µm and represents a 
variety of Jurkat cell sizes.

B Small diameter Large diameter
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1 2 3 4 5 6 7 8
Nucleated 58.73 62.66 66.00 54.52 57.70 60.19 62.04 57.88
SizeGate – IA 68.02 68.21 67.93 68.21 68.21 65.72 68.21 68.21
Single cells 94.19 81.42 88.55 99.52 90.43 92.60 97.54 99.37
AISinglets – IA 96.68 96.69 96.67 99.57 96.69 94.95 96.69 96.69
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Figure 4. Automated image analysis–assisted gating reduces variability among users or downstream cell population. (A) Automated image 
analysis (IA) reduces variance for size exclusion and singlet gating across users. Standard error and deviation for populations data was lower using 
image analysis. (B) The average variation (CV) for size exclusion and singlet gating improves using image analysis for gating. (C) Automatic image 
analysis slightly improves consistency for downstream population statistics across users. (D) With automated image analysis CV improves for 
apoptotic, dead apoptotic, and live healthy Jurkat cells. Dead cells were excluded because of low numbers. (E–F) Images provide population-level 
view to visually distinguish populations and characterize cell behavior.
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Conclusions
When performed on the Attune CytPix Flow Cytometer, 

automated image analysis combined with conventional 

flow cytometry provides a robust quantitative method for 

standardizing flow cytometry data analysis. Our results 

demonstrate that automated image-assisted analysis enables 

more accurate gating of true singlet populations and exclusion 

of unwanted events. This has potential to modify experimental 

conclusions. In addition, our results suggest that this analysis 

method could be used to reduce inter-user and intra-user 

variability within an experiment and across samples. Users can 

gain distinct quantitative measurements using the images in 

a high-throughput manner, acquiring more data faster than is 

possible with manual annotation. The image analysis method 

could be used to assess sample quality, optimize assay 

protocols, and verify rare events. With automated image analysis 

and flow cytometry, users can visualize populations and perform 

stain-free population statistics from a single sample. The result is 

a streamlined workflow that empowers flow cytometry users with 

unbiased, data-driven cell analysis to reduce user variability and 

improve accuracy, while delivering confidence in results.
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