Thermo Fisher s c i e n t i f i c

Real Time Analysis of Copper Alloys using Handheld X-Ray Fluorescence Spectrometry

Takamichi Nakayama, Bhavin Panchal, Mathieu Bauer Field and Safety Instruments

Technical Seminar of the IWCC Osaka Feb 2023

The world leader in serving science

IWCC LEGAL DISCLAIMER

The purpose of this presentation is to guide programs benefiting the copper industry and to provide attendees with information to make independent business decisions.

Thermo Fisher

Who is Thermo Fisher Scientific?

Our Mission: we enable our customers to make the world healthier, cleaner and safer

Thermo Fisher Scientific Portfolio

Clinical Oncology

Genetic

Analysis

ThermoFisher SCIENTIFIC

BioProduction

ImmunoDiagnostics

Agenda

Importance of metal analysis

- 2 Metal and Alloy Testing Methods
- 3 Handheld X-Ray Fluorescence Spectrometry
 - Alloy grade identification
 - Accuracy, Precision, Detection limits

Examples

6

The Importance of Material Verification

Thermo Fishei

Deploy a "trust but verify" method to ensure proper material verification.

Metal and Alloy Material Testing Methods

Qualitative Material Testing Methods		Elemental A	Analysis / Sp	ectroscopy		
Visual/ Hand Sorting	Magnet Tests	Spark Tests	Chemical Acid Tests	Stationary Spectrometers OES, XRF	Mobile OES	Handheld XRF/ LIBS
 Not all methods a Inaccurate Result Time Consuming Difficult to Separa OSHA Restriction Mostly Obsolete 	re applicable to every s / (compared to spec (must combine multipl te Alloy Grades s/ Safety Liabilities	metal base etroscopy) e methods)		 Lab / field lab use Need highly Skilled Operator Low Throughput (sampling needed) 	 "Mobile" Technology (difficult to maneuver) Moderately Skilled Operator Medium Throughput 	 Handheld Technology (easy to maneuver) Pre-calibrated instruments Point-and- Shoot
				 Best accuracy & precision 		 High Throughput

7 Proprietary & Confidential | mathieu.bauer@thermofisher.com | Feb 2023

OES: optical emission spectrometry -

XRF: x-ray fluorescence spectrometry - LIBS: Laser induced breakdown spectrometry

How Do Handheld XRF & LIBS Work?

Outer Electr

XRF: <u>X-Ray Fluorescence spectrometry</u>

- A miniaturized tube irradiates the sample surface
- One electron from inner atom shell is ejected
- Electron from outer shell fill the vacancy
- An element-specific x-ray photon (fluorescence) is emitted
- Photon is detected in a semi conductor detector

LIBS: Laser Induced Breakdown Spectrometry

- A focused laser pulse ablates the sample surface and forms a plasma
- The plasma atomizes the sample material
- Atoms change from ground to excited state
- Getting back to ground state, atoms emit elementspecific photons in UV-Visible range
- Photons are detected using an optical spectrometer

Handheld Metal Analysis

Handheld-XRF

- Ready to use, pre-calibrated analyzers.
- "Point-and-shoot" analysis
- Element range: magnesium (Mg) to uranium (U)
- Large spot size (8mm diameter)
- + Near laboratory grade results
- + Non-destructive testing Method
- + No or little sample preparation required
- Unable to detect carbon (C) and beryllium (Be)
- Longer testing time needed to detect light elements

Handheld-LIBS

- Ready to use, pre-calibrated analyzers.
- "Point-and-shoot" analysis
- Element range: theoretically entire periodic system
- Small spot size (50µm diameter)
- + Near laboratory grade results
- + Including carbon (C), and beryllium (Be) detection
- Sample Preparation (grinding) required
- Periodic setup procedures required
- Unable to measure low levels of sulphur (S) and phosphorus (P) in steel or copper alloys

HH-LIBS: suitable for low alloy steel & stainless steel that needs carbon analysis HH-XRF: more suitable for non-ferrous metals including copper-based alloy analysis

XRF Spectrum

Information for quantitative analysis

Thermo Fisher scientific

Alloy Library for Copper Grades

Standard Alloy Library includes 60 common grades according CDA + 450 alloys from different bases

Copper Grades Average Composition

Library can be augmented by user

٠

but composition
 of added alloys
 defined should
 not overlap with
 existing entries

Thermo Fisher

- Customized library can be created
- Libraries available
 - ASTM/SAE
 - DIN standard
 - GB standard

Copper Grade ID According to Different Standards

USA – CDA

Copper Dev. Association

05:32	2. 2	
← G	eneral Metals	
#1545	1.7 sec	%
C464	NavBs	0.44 Excellent
Ele	%	±2σ
Cu	60.860	0.094
Zn	37.650	0.085
Sn	1.095	0.016
Pb	0.177	0.011
Ni	0.098	0.007
Fe	0.040	0.006
Below LOD		4σ
14/	4.00	0.044

China GB Guobiao

05:29	2. %	<u>ا</u>
+	General Metals	
#1548	3 2.1 sec	×°
HSn	62-1	0 Excellent
Ele	%	±2σ
Cu	60.962	0.092
Zn	37.575	0.084
Sn	1.089	0.016
Pb	0.172	0.010
Ni	0.106	0.007
Fe	0.036	0.006
Below LOD		4σ
	100	0.000

Germany DIN standard

05:31		* 🖣 🤅 🗖
←	General Meta	ls
#154	41 1.6 sec	*
CuZ	Zn38Sn1	0 Excellent
Ele	e %	±2σ
Cu	60.886	0.216
Zn	37.682	0.194
Sn	1.097	0.035
Pb	0.176	0.024
Ni	0.089	0.015
Fe	0.067	0.014
Below LC	D	4σ
Du	100	0.002

Thermo Fisher

SCIEN

Measurement Accuracy

Parameters reflecting accuracy

- R²: reflects linearity of the response. Shall be close to 1
- Slope: reflects systematic error when different from 1 & good linearity
- SEE: standard error of estimate (average difference between refence and measure value)

Accuracy depends on algorithm

- Model of line overlaps (additive matrix effect)
- Model of absorption & enhancement effect from concomitant elements (multiplicative matrix effect)

¹³ Proprietary & Confidential | mathieu.bauer@thermofisher.com | 11-11-2020

Measurement Precision & Limits of Detection

0.007

0.225

Precision for different testing time

#1

36

5:43	2.3		1	
← G	eneral Metals			
#1572	10.3 sec	عر		
360F	rCutBs	0 Excellent		
Ele	%	±2σ		
Pb	2.825	0.057		
Cu	61.098	0.158		
Zn	35.363	0.133		
Fe	0.234	0.014		
	05	:41	28	1 (P)
		← Ger	neral Metals	
	#	1569 39	9.8 sec	3
	3	60Fr	CutBs	0 Excellent
		Ele	%	±2σ
	I	Pb	2.798	0.027
		Cu	61.084	0.069
	2	Zn	35.432	0.060

LODs on XL5 Plus* (60s per beam)

Element	LOD (%)
AI	0.028
Si	0.0082
Р	0.0070
Mn	0.012
Fe	0.0104
Ni	0.0083
Zn	0.0176
Sn	0.0022
Pb	0.0033
Bi	0.0028

Precision expressed as multiple of standard deviation σ

LOD is defined as the signal equivalent to 3 σ of the background

Thermo Fis

Precision and LOD depend on

Tube (Power, max voltage, max • current)

- Detector (technology, Surface, Window Material)
- Measurement time •

LOD $\alpha \sigma \alpha - \overline{}$

Qudrupling measurement time will provide 2-times better precision and cut in half the limits of detections

*5W-50kV-500µA max, SDD 20mm2, Graphene Window,

Fe

Example 1: Rapid Separation of Copper Alloys

1-2 s measurement. Approach used in metal scrap sorting.

Copper Alloy Classification

Wrought Alloys

- Coppers C10100-C15999
- High-copper Alloys C16200-C19999
- Brasses C20000-C49999
- Bronzes C50000-C69999
- Cupronickel C70000-C73499
- Nickel Silvers C73500-C79999

Cast Alloys

- Coppers C80000-C81399
- High-copper Alloys C81400-C83299
- Brasses C83300-C89999
- Bronzes C90000-C95999
- Cupronickel C96000-C96999
- Nickel Silvers C97000-C97999
- Leaded Coppers C98000-C98999
- Special Alloys C99000-C99999

Cartridge brass			
	04:53	2.8	ê 🤶 I.
	← A	lloy	
	#1153	2.3 sec	حمر
	C260	CartBs	0 Excellent
	Ele	%	±2σ
	Cu	68.919	0.410
	Zn	31.081	0.332
	Below LOD		4σ
	Se	<lod=< td=""><td>0.025</td></lod=<>	0.025
	Al	<lod=< td=""><td>0</td></lod=<>	0
	Ti	<lod=< td=""><td>0.257</td></lod=<>	0.257
	V	<lod=< td=""><td>0.149</td></lod=<>	0.149
	6	100	0.104

Free Cutting brass		
04:23	23[
← G	eneral Metals	
#1215	1.4 sec	40
360F	rCutBs	0.05 Excellent
Ele	%	±2σ
Pb	2.546	0.198
Cu	61.639	0.523
Zn	35.465	0.457
Fe	0.156	0.046
Sn	0.155	0.045
Below LOD		4σ
Au	<lod=< td=""><td>0</td></lod=<>	0

Aluminum Bronze

04:40	S	
← \\Ge	eneral Metals	
	inclui incluis	
#1257 3	3.1 sec	3
C630/	955AIB	C Excellent
Ele	%	±2σ
LEC	10.250	0
Cu	81.658	0.481
Fe	3.826	0.130
Ni	4.146	0.144
Mn	0.059	0.029
Below LOD		4σ
Pb	<lod=< th=""><th>0.023</th></lod=<>	0.023
A.I.	100	0

Cupronickel

-		
04:25	2.8	
←	General Metals	
#122	20 1.4 sec	حمه
C7 1	15(70-30)	0 Excellent
Ele	e %	±2σ
Cu	69.058	0.886
Fe	0.620	0.079
Ni	29.731	0.521
Mn	0.534	0.087
Below LO	D	4σ
Pb	<lod=< td=""><td>0.035</td></lod=<>	0.035
Al	<lod=< td=""><td>0</td></lod=<>	0

Naval Brass

05:32	22	1 😤 👘
← G	ieneral Metals	
#1545	1.7 sec	~ ~
C464	NavBs	0.44 Excellent
Ele	%	±2σ
Cu	60.860	0.094
Zn	37.650	0.085
Sn	1.095	0.016
Pb	0.177	0.011
Ni	0.098	0.007
Fe	0.040	0.006
Below LOD		4σ
147	100	0.044

Leaded Red brass

24:45	2%	19
← G	eneral Metals	;
#1244 (0.5 sec	لم ر
836(8	85-555)	0.29 Excellent
Ele	%	±2σ
Pb	5.014	0.423
Cu	85.042	0.877
Zn	4.182	0.327
Ni	0.733	0.166
Sn	4.745	0.289
Below LOD		4σ
Au	<lod=< td=""><td>0</td></lod=<>	0
		-

Phos.-Lead Bronze

04:42	2.8	1 (L
← G	eneral Metals	:
#1241	1.3 sec	4 0
C544	PBzB2	0.05 Excellent
Ele	%	±2σ
LEC	0.280	0
Pb	3.450	0.223
Cu	87.990	0.555
Zn	3.634	0.188
Sn	4.563	0.177
Below LOD		4σ
Au	<lod=< td=""><td>0</td></lod=<>	0
A.I.	100	0

Leaded Tin Bronze

04:46	283	
	General Metals	
#1251	2.4 sec	4
C93 7	7PbSnBz	0 Excellent
Ele	%	±2σ
Pb	9.129	0.275
Cu	80.004	0.542
Zn	0.407	0.102
Ni	0.341	0.069
Sb	0.382	0.057
Sn	9.664	0.243
Below LOD		4σ
A	400	0

15 Proprietary & Confidential | mathieu.bauer@thermofisher.com | Feb 2023

Example 2: Copper Grades Containing Light Elements

Light Element Content (LEC)

Aluminum Bronze measuring main elements only

04:29	Z 2 [(ic
+	General Metals	
#123	3 4.9 sec	.
C63	0/955AlB	0 Excellent
Ele	%	±2σ
LEC	10.250	0
Cu	81.546	0.300
Fe	3.745	0.085
Ni	4.083	0.096
Mn	0.062	0.019
Below LO	D	4σ
Pb	<lod=< td=""><td>0.010</td></lod=<>	0.010
	100	-

Aluminum Bronze measuring main +light elements only

04:29	A 2	
←	General Metals	
#123	2 13.0 sec	3
C63	0/955AlBz	0 Excellent
Ele	%	±2σ
Cu	80.611	0.377
Fe	3.932	0.063
Ni	4.161	0.075
Mn	0.086	0.017
AI	10.851	0.365
Si	0.098	0.030
Below LOD)	4σ
6.		0.004

Beryllium Bronze

(Be can't be measured by XRF)

04:19	S \$	à 🔅 👘
← G	eneral Metals	
#1182 8	3.7 sec	3
C172	BeCu	0.35 Excellent
Ele	%	±2σ
LEC	1.900	0
Cu	97.791	0.150
Fe	0.053	0.009
Ni	0.030	0.015
Co	0.226	0.011
Below LOD		4σ
Pb	<lod=< td=""><td>0.006</td></lod=<>	0.006

Alloy grades can in some case be identified without measuring certain key elements

Pass / Fail Analysis

Example: California Proposition 65 restricts presence of lead used in plumbing to 0.2%

Red Brass Valve

Compliant Material

00:29	2 - A	A
←	General Metal	s
#155	54 5.7 sec	3
C23	ORedBs	0 Excellent
XCPLCY	Pass	\checkmark
Ele	%	±2σ
Pb	0.048	0.014
Pb Cu	0.048 85.303	<mark>0.014</mark> 0.218
Pb Cu Zn	0.048 85.303 14.544	0.014 0.218 0.124
Pb Cu Zn Fe	0.048 85.303 14.544 0.071	0.014 0.218 0.124 0.014
Pb Cu Zn Fe Below LC	0.048 85.303 14.544 0.071	0.014 0.218 0.124 0.014 40

Non-compliant Material

HH-XRF sreening tool for RoHS, US-CPSIA, packaging directive, etc.

Applications for Copper Alloy Analysis

Metal Scrap Recycling

- Manual scrap sorting:
 - Rough sorting by families
 - Fine sorting by grades
 - Measurement of lead, which may lower value of scrap

Raw Material & in-process Quality Control

- Incoming materials inspection in metal fabrication
- Quality control of semi-finished & finished products

Positive Material Identification

• Pre-commissioning and retroactive and Inspection of critical materials in offshore oils and gas or marine industries

Compliance measurements

 Material compliance verification vs. regulation such as RoHS or California Proposition 65

Faster decision making with high level of confidence

Benefits

- On-site / at line real time measurement
- Accurate Quantitative Analysis
- No / Little sample preparation needed
- Usable by non-experts

Product Demonstration >>

Thermo Fisher SCIENTIFIC

?

For more information: thermofisher.com/niton

Questions?

Takamichi Nakayama (Presenter) Sales Manager Thermo Fisher Scientific Takamichi.nayama@thermofisher.com

Bhavin Panchal Product Manager Thermo Fisher Scientific Bhavin.Panchal@thermofisher.com Mathieu Bauer Senior Application Scientist Thermo Fisher Scientific Mathieu.bauer@thermofisher.com

Thermo Fisher