thermoscientific

Type Test a New Personnel Dosimeter System to IEC 62387:2012

Ling Luo¹ Presenting, Luis Benevides², Karen Streetz¹, Cassidy McKee¹ ¹Thermo Fisher Scientific RMSI, Oakwood, OH, USA, ²Cme Consultants LLC.

Abstract

Thermo Fisher Scientific has introduced a new personnel dosimeter, model 8850. This new dosimeter consists of a standard Thermo Scientific[™] Harshaw[™] TLD LiF: Mg,Cu,P card, with a new holder design. The reusable holder is small and lightweight, and contains filtration optimized for personnel dosimetry. This new dosimeter was type tested to IEC 62387:2012 along with the Thermo Scientific Harshaw Model 8800PLUS TLD Reader. Extensive testing of the radiological, environmental and mechanical performance of the system was performed according to the standard. The dosimeter is sensitive to a wide photon energy range from 16 keV and dose range from 0.01 mSv. It is also sensitive to beta from 85Kr. Comprehensive angular and side effect tests for photon and beta were also completed. This paper presents the high achieving type test results and uncertainty analysis of each test.

Dosimetry System

TLD Reader: Thermo Scientific Harshaw Model 8800 Plus

Software: WinREMS WinAlg8850

Heating Profile: Preheat: 10s @ 165°C Acquisition: 13s (16s) w/heating rate 15°C/s to max temperature 260°C Anneal: 10s @ 260°C

Dosimeter:

Thermo Scientific Harshaw 8850 Holder TLD LiF:Mg,Cu,P Card: <u>7H7H7H6H</u> 0.38 x 0.38 x 0.25 x 0.38 mm 07H7H0 0 x 0.38 x 0.25 x 0 mm

Two configurations were tested: • 4 element card + dose algorithm • 2 element card, direct readout*

Introduction

A dosimetry system is expected to be type tested against a relevant IEC international standard. The technical content of IEC standard is kept under constant review to ensure that it reflects the current technology. The standard for the thermoluminescent dosimeter (TLD), a passive dosimeter, has evolved from IEC 1066:1991 to IEC 62387:2012, from applicable to a TLD specific system to a broader based standard which applies to an integrated passive dosimetry system. In its evolution, it harmonized with relevant ISO standards (ISO 4037, 6980, and 8529) on reference radiation and calibration; it extended photon and beta energy ranges and included more complicated mixture radiations and higher angles for testing; it integrated Hp(3) requirement; it incorporated the concept of a measurement consisting of a value and an associated uncertainty; and it aligned the performance requirements of a dosimetry system with the recommendations on accuracy in ICRP Publication 75.

In this test, majority of irradiations for radiological testing were carried out at PTB and PNNL, national laboratories of Germany and US. Their associated uncertainties of the radiations ranged 3 - 5%. Irradiations for Environmental testing were performed using in-house sources, which were traceable to NIST or PTB with uncertainties of 5%.

Multiple dosimeters were irradiated at a single test point to have n measurement. The uncertainty U with 95% confidence level was then determined by

Results

More than 100 testing points include wide ranges of radiation, 16 keV to 1250 keV photon, 0.2 MeV to 0.8 MeV (mean energy) beta, and neutrons, in dose extends from 10 µSv to 10 Sv and angles to 90°. Mixed field A:B ratio spans from 1:9 to 9:1. Environmental test is from -20°C to 50°C and RH 20% to 75% (achievable from the test setup). Light exposure testing is 12% greater than the IEC specified sunlight. Some results are shown below, a complete report will be available in full article.

* LiF is near tissue equivalent and has flat energy response

The combined uncertainty of each testing point was calculated according to

$$U_{com} \approx \frac{\overline{G}}{\overline{G}_{r,0}} \sqrt{\left(\frac{U}{\overline{G}}\right)^2 + \left(\frac{U_{r,0}}{\overline{G}_{r,0}}\right)^2} \quad \text{for} \quad \overline{x} = \frac{\overline{G}}{\overline{G}_{r,0}}$$
$$U_{com} \approx \sqrt{U^2 + U_{r,0}^2} \quad \text{for} \quad \overline{x} = \overline{G} \pm \overline{G}_{r,0}$$

$$U_{C,com} = \sqrt{U_{C,rel;r,0}^2 + U_{C,rel;i}^2}$$

Where,

 U_{com} is the expanded uncertainty of a combined quantity, i.e. testing radiation field and reference radiation field $(^{137}Cs, C_{r,0} = 3 \text{ mSv}).$

G is indicated (measured) value. $G_{r,0}$ is indicated value under reference conditions.

 $U_{c,com}$ is the expanded uncertainty of reference radiation source at conventional true values $C_{r,0}$ and C_i

Summary

Category	Sub- category	Requirement	Result – Four Element	Result – Two Element	Category	Sub- category	Requirement	Result – Four Element	Result – Two Element
Radiation Performance Requirements And Tests (Dosimetry System)	Coefficient of Variation	Statistical doses fluctuations are within specified ranges	Fulfilled	Fulfilled	Environmental Performance Requirements and Tests	Ambient Temperature (Dosimeter)	$0.91 \leq \frac{\overline{G}_2}{\overline{G}_1} \pm U_{com} \leq 1.11 \text{ and } \overline{G}_2 - \overline{G}_1 \pm U_{com} \leq 0.07 \text{ mSv}$	Fulfilled	Fulfilled
	Non-Linear Response	$0.91 - U_{C,com} \le \left(\frac{\overline{G}_{i}}{\overline{G}_{r,0}} \pm U_{com}\right) \cdot \frac{C_{r,0}}{C_{i}} \le 1.11 + U_{C,com}$	Fulfilled	Fulfilled		Light Exposure (Dosimeter)	$0.91 \leq \left(\frac{\overline{G}'_i}{\overline{G}'_2} \pm U_{com}\right) \leq 1.11 \text{ and } \left \overline{G}'_i - \overline{G}'_2 \pm U_{com}\right \leq 0.07 \text{ mSv}$	Yel and Grn Fulfilled in 112% intense light	Yel and Grn Fulfilled in 112% intense light
	Overload, After-effects and Reusability	$0.91 - U_{C,com} \le \left(\frac{\overline{G}_i}{\overline{G}_{r,0}} \pm U_{com}\right) \cdot \frac{C_{r,0}}{C_i} \le 1.11 + U_{C,com}$ and Each COV within range	Fulfilled over-resp at 0.01 mSv afterward	Fulfilled over-resp at 0.01 mSv aftereffect		Long Term susceptibility (Dosimeter)	$0.91 \leq \left(\frac{\overline{G}_i}{\overline{G}_1} \pm U_{com}\right) \leq 1.11 \text{ and } \overline{G}_i - \overline{G}_1 \pm U_{com} \leq 0.07 \text{ mSv}$ in a month	Fulfilled	Fulfilled
						Reader Stability (Reader)	$0.91 \leq \left(\frac{\overline{G}_{i}}{\overline{G}_{1}} \pm U_{\text{com}}\right) \leq 1.11 \text{ and } \overline{G}_{i} - \overline{G}_{1} \pm U_{\text{com}} \leq 0.07 \text{ mSv}$	Fulfilled	Fulfilled
	Responses – Photon, Beta, and Neutron, Energy and Angular	$\begin{split} r_{\min} - U_{C,com} \leq & \left(\frac{\overline{G}_i}{\overline{G}_{r,0}} \pm U_{com} \right) \cdot \frac{C_{r,0}}{C_i} \leq r_{\max} + U_{C,com} \end{split}$ for wide ranges of photon, beta, and neutron, and radiation energy and angle	Fulfilled for wide ranges radiation	Fulfilled to wide ranges radiation		Ambient Temperature (Reader)	$0.91 \leq \left(\frac{\overline{G}_i}{\overline{G}_1} \pm U_{com}\right) \leq 1.11 \text{ and } \overline{G}_i - \overline{G}_1 \pm U_{com} \leq 0.07 \text{ mSv}$	Fulfilled	Fulfilled
Respons	se to Mixed diations etry System)	$\begin{split} r_{min,w} &\leq r = \frac{G_{K+L}}{C_{K+L}} \cdot \frac{C_{r,0}}{G_{r,0}} \leq r_{max,w} \\ r_{min,w} &= \frac{r_{min,K} \cdot C_K + r_{min,L} \cdot C_L}{C_K + C_L}, \ r_{max,w} = \frac{r_{max,K} \cdot C_K + r_{max,L} \cdot C_L}{C_K + C_L} \\ \end{split}$	Fulfilled 1:9 to 9:1 ratio for Photon	Fulfilled 1:9 to 9:1 o ratio for Photon		Light Exposure (Reader)	$0.91 \leq \left(\frac{\overline{G}_i}{\overline{G}_1} \pm U_{com}\right) \leq 1.11 \text{ and } \overline{G}_i - \overline{G}_1 \pm U_{com} \leq 0.07 \text{ mSv}$	Fulfilled under sunlight	Fulfilled under sunlight
(Dosime			Lower ratio for Beta and neutron			Primary Power Supply (Reader)	$0.91 \leq \frac{\overline{G}_2}{\overline{G}_1} \pm U_{com} \leq 1.11 \text{ and } \overline{G}_2 - \overline{G}_1 \pm U_{com} \leq 0.07 \text{ mSv}$	Fulfilled	Fulfilled

Conclusion

Thermo Fisher Scientific personnel dosimeter 8850 and Model 8800Plus Reader is type tested. The 4-element card option fulfills IEC 62387:2012 requirement for photon, beta, and neutron monitoring. The 2-element option is also an excellent gamma dosimeter.

Thermo Fisher S C I E N T I F I C

www.thermofisher.com/dosimetry

© 2017 Thermo Fisher Scientific Inc. All rights reserved. All trademarks are the property of Thermo Fisher Scientific and its subsidiaries unless otherwise specified. RB 2274192 0717