A 15 gene Panel for BRCA1, BRCA2 and DDR genes for Reporting Variants on FFPE Samples - OncomineTM BRCA Expanded Panel

Chenchen Yang, Charles Scafe, Yun Zhu, Yu-ting Tseng, Xiaoping Duan, Jigar Patel, Santhoshi Bandla, Rushikesh Kanap, Aren Ewing, Anthony Kosky, Seth Sadis, Steve Roman, Fiona C.L. Hyland Thermo Fisher, 200 Oyster Point Boulevard, South San Francisco, CA; Carlsbad, CA; Ann Arbor, MI

INTRODUCTION

Breast cancer is the second most commonly diagnosed cancer (11.6% of total cases) world wide¹. Identifying germline and somatic mutations in BRCA1 and BRCA2 genes and other homologous recombination DNA damage response (HR DDR) genes is important as these genes are implicated in inherited risk and response to certain therapies². Small variants (SNV and INDEL) and large rearrangements (LRs) such as copy number variations (CNV) in these genes can be detected with next-generation sequencing (NGS).

We describe a new NGS panel, the Oncomine[™] BRCA Expanded panel. It contains 15 genes, including BRCA1 and BRCA2 as well as ATM, BARD1, BRIP1, CDK12, CHEK2, FANCD2, MRE11, NBN, PALB2, PPP2R2A, RAD51B, RAD54L and TP53, comprising 1011 amplicons. An additional 255 genes (with optimized and verified performance) are available for addition to this panel, of which we suggest 25 genes which may be the most relevant.

This panel is designed for FFPE samples and can also be used with samples having non-degraded DNA. Germline and somatic mutations, such as SNPs, Indels, Copy number gains, can be detected for all genes, and Exon deletions can be detected for BRCA1 and BRCA2.

MATERIALS AND METHODS

The panel uses Ion AmpliSeq technology and is run on the Ion S5 Gene Studio™ instrument. Automated variant calling workflow is provided within Ion ReporterTM. AcroMetrix Oncology Hotspot Control (AOHC) samples are used for verification of small variants calling. Samples with known gene copy number gains are used for CNV calling verification.

RESULTS

Genes in Oncomine[™] BRCA **Expanded panel**

			FANCE	26	
able 1. 15 g	ene panel	FANCF	11		
	one paner		FANCG	30	
Gene	Num Amps	Coverage	FANCI	72	
			FANCL	27	
ATM	194	99.6	FANCM	84	
BARD1	42	100	GEN1	37	
BRCA1	113	100	MLH3	56	
BRCA2	152	100	PARP1	54	
BRIP1	72	99.9	PMS1	37	
CDK12	67	100	PRKDC	204	
CHEK2	29	99.3	RAD50	63	
FANCD2	81	98.4	RAD51	20	
	-		RAD51C	23	
MRE11	42	100	RAD51D	20	
NBN	38	100	RAD52	26	
PALB2	60	100	RNASEH2A	14	
PPP2R2A	26	100	RNASEH2B	22	
RAD51B	23	100	RNASEH2C	10	
RAD54L	39	100	TP53BP1	84	
TP53	23	100	XRCC2	11	

Table 2. 25 expanded genes

100

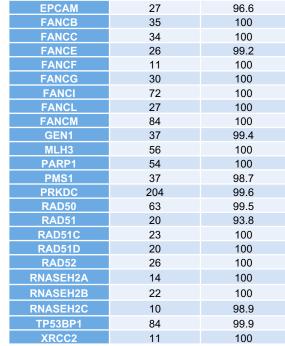


Figure 1. Customized panel can include any of 270 genes including expanded genes, and can remove genes in the core panel

General performance evaluation

Figure 2. Amplicon design and sequencing results

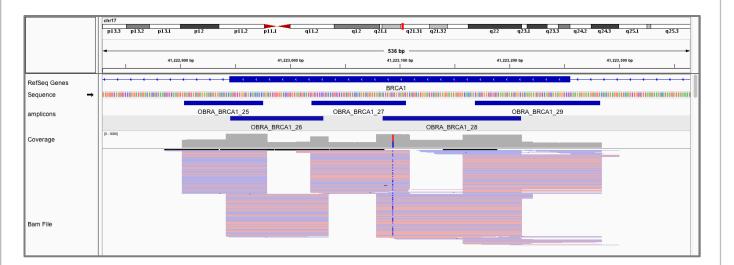
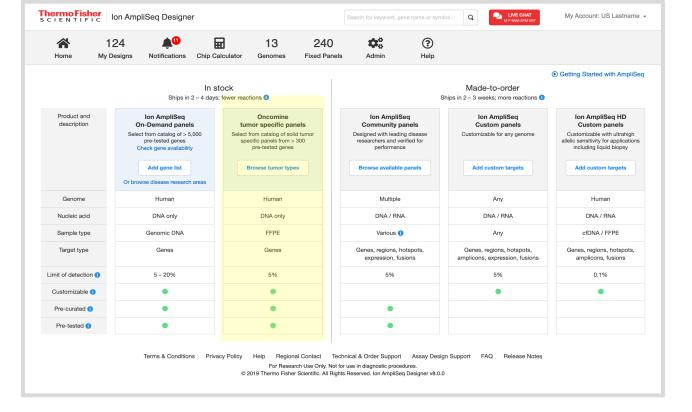



Figure 3. On target and uniformity


Average percent readds on target and uniformity of amplicon coverage of Oncomine™ BRCA Expanded panel on non-FFPE, good-quality FFPE and poorquality FFPE samples.

Sensitivity and specificity of OncomineTM BRCA Expanded panel based on 144 variants detection results using AcroMetrix Oncology Hotspot Control (AOHC) samples.

Figure 4. Sensitivity and specificity in

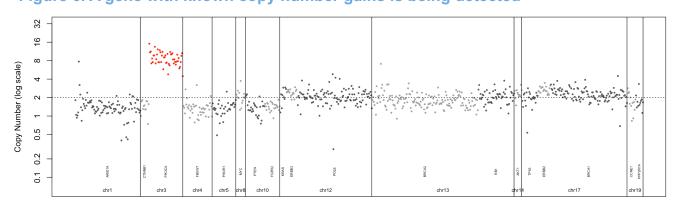

Panel Selection on AmpliSeg.com

Figure 5. Oncomine[™] tumor specific panels on Ampliseq.com

Variant calling examples

Figure 6. A gene with known copy number gains is being detected

Amplicon Index (amplicons ordered by genome location

Table 3. 32 out of 33 SNVs in TP53 are being detected using AOHC samples

Locus	COSMIC ID	Genotype	Ref	Function	Protein Change	Coverage	Alt Allele Frequency	Detected
chr17:7572986	COSM307348	G/A	G	nonsense	p.Gln375Ter	1498	9.95	Yes
chr17:7573010	COSM1191161	T/C	T	unknown	NA	1492	10.19	Yes
chr17:7574003	COSM11073	G/A	G	nonsense	p.Arg342Ter	2000	3.2	No
chr17:7574012	COSM11286	C/A	С	nonsense	p.Glu339Ter	1999	6.25	Yes
chr17:7574018	COSM11071	G/A	G	missense	p.Arg337Cys	1999	6.35	Yes
chr17:7574026	COSM11514	C/A	С	missense	p.Gly334Val	1998	6.31	Yes
chr17:7576855	COSM11354	G/A	G	nonsense	p.Gln331Ter	1997	6.31	Yes
chr17:7576865	COSM44823	A/C	Α	nonsense	p.Tyr327Ter	2000	6.5	Yes
chr17:7576883	COSM46088	T/C	Т	synonymous	p.Lys321=	2000	6.4	Yes
chr17:7576897	COSM10786	G/A	G	nonsense	p.Gln317Ter	1996	6.71	Yes
chr17:7577022	COSM10663	G/A	G	nonsense	p.Arg306Ter	1717	6.99	Yes
chr17:7577046	COSM10710	C/A	С	nonsense	p.Glu298Ter	1720	6.86	Yes
chr17:7577105	COSM10863	G/A	G	missense	p.Pro278Leu	2000	6.55	Yes
chr17:7577120	COSM10660	C/T	С	missense	p.Arg273His	2000	5.95	Yes
chr17:7577538	COSM10662	C/T	С	missense	p.Arg248Gln	2000	5.25	Yes
chr17:7577548	COSM6932	C/T	С	missense	p.Gly245Ser	2000	7.4	Yes
chr17:7577559	COSM10812	G/A	G	missense	p.Ser241Phe	2000	6.9	Yes
chr17:7577580	COSM10725	T/C	Т	missense	p.Tyr234Cys	2000	6.6	Yes
chr17:7578190	COSM10758	T/C	Т	missense	p.Tyr220Cys	2000	6.2	Yes
chr17:7578196	COSM44317	A/T	Α	missense	p.Val218Glu	1997	6.11	Yes
chr17:7578203	COSM10667	C/T	С	missense	p.Val216Met	2000	6.25	Yes
chr17:7578235	COSM43947	T/C	Т	missense	p.Tyr205Cys	1998	6.06	Yes
chr17:7578388	COSM10738	C/T	Т	missense	p.Arg181His	1942	7.21	Yes
chr17:7579295	COSM44985	C/T	С	unknown	NA	2000	5.65	Yes
chr17:7579312	COSM43904	C/T	С	synonymous	p.Thr125=	2000	5.4	Yes
chr17:7579358	COSM10716	C/A	С	missense	p.Arg110Leu	2000	6.05	Yes
chr17:7579368	COSM46103	A/C	Α	missense	p.Tyr107Asp	1999	6.15	Yes
chr17:7579472	COSM250061	G/C	G	missense	p.Pro72Arg	1999	94.2	Yes
chr17:7579521	COSM12168	C/A	С	nonsense	p.Glu56Ter	2000	5.95	Yes
chr17:7579536	COSM44907	C/A	С	nonsense	p.Glu51Ter	1998	6.01	Yes
chr17:7579553	COSM43664	A/G	Α	missense	p.Leu45Pro	1999	5.7	Yes
chr17:7579575	COSM46286	G/A	G	nonsense	p.Gln38Ter	1996	5.96	Yes
chr17:7579801	NA	G/C	G	unknown	NA	1991	88.5	Yes

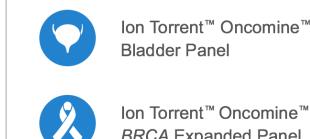

Amplification and Sequencing Workflow

Figure 7. Oncomine™ tumor specific panel workflow on Ion GeneStudio™ S5

Additional OncomineTM tumor-specific panels

Figure 8. List of additional Additional Oncomine™ tumor-specific panels

Ion Torrent™ Oncomine™ Kidney Panel

Ion Torrent™ Oncomine™

BRCA Expanded Panel

Ion Torrent™ Oncomine™

Lymphoma Panel

Liver Panel

Ion Torrent™ Oncomine™ Gastric and Esophageal Panel

Ion Torrent™ Oncomine™

Colorectal and Pancreatic Panel

Ion Torrent™ Oncomine™ Melanoma Panel

Ion Torrent™ Oncomine™ **Gynecological Panel**

Ion Torrent™ Oncomine™ **Prostate Panel**

HIGHLIGHTS

- Customizable panel with verified performance for clinical research
- Low sample input requirement (20 ng input DNA)
- Works with FFPE tissue samples
- End-to-end workflow including bioinformatics and reporting solutions
- Quick turnaround time (2 days from DNA to data)

CONCLUSIONS

An NGS assay with a comprehensive data analysis approach was developed that is capable of detecting both small mutations and LRs simultaneously in FFPE samples with high sensitivity. This is an important assay for BRCA1/2 and HR DDR translational research.

REFERENCES

- 1. Bray, F., Ferlay, J., Soerjomataram, I., Siegel, R. L., Torre, L. A. and Jemal, A. (2018), Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Cancer Journal for Clinicians, 68: 394-424. doi:10.3322/caac.21492
- 2. Heeke, A. L., Pishvaian, M. J., Lynce, F., Xiu, J., Brody, J. R., Chen, W. J., ... Isaacs, C. (2018). Prevalence of Homologous Recombination-Related Gene Mutations Across Multiple Cancer Types. JCO precision oncology, 2018, 10.1200/PO.17.00286. doi:10.1200/PO.17.00286

ACKNOWLEDGEMENTS

R&D team and Product Management team, South San Francisco, CA R&D team, Carlsbad, CA R&D team, Ann Arbor, MI

