TCRB chain convergence in chronic cytomegalovirus infection and cancer: insights from a novel potential immune repertoire biomarker

T Looney¹, J Zheng¹, G Lowman¹, D Topacio-Hall¹, F Hyland¹. (1) Thermo Fisher Scientific

ABSTRACT

Human cytomegalovirus (CMV) is a common immune- evasive herpes family virus leading to lifelong asymptomatic infection in 50 to 80% of humans. Current research evaluating the use of TCR sequencing to predict response to immunotherapy has focused on measurements of T cell clonal expansion and TCR convergence (2,3,4) as potential predictive biomarkers for response. Given that CMV infection has been reported to elicit large clonal proliferations of CMV reactive T cells (1), and is a source of chronic antigen stimulation, we hypothesized that CMV infection might alter T cell repertoire features in a manner relevant to the potential biomarker use of TCR sequencing. Here we sought to identify features of CMV infection using TCRB profiling of peripheral blood (PBL) total RNA. We identify reduced T cell evenness and elevated TCR convergence as features of chronic CMV infection.

INTRODUCTION – Definition of TCR Convergence and Evenness

TCR Evenness is a measure of the similarity of clone frequencies in a TCR repertoire. It is also referred to as the normalized Shannon Entropy and is equivalent to 1 - “clonality.” Evenness nearing 1 indicates that all clones are found at similar frequencies in a sample.

Convergent TCRs are identical in amino acid space but different in nucleotide space. They represent instances where T cells independently underwent VDJ recombination and proliferated in response to a common antigen. In the context of cancer, TCR convergence has been proposed to serve as an indicator of the immunogenicity of a tumor and thus its sensitivity to checkpoint blockade therapy (2,3,4 and Table 2). Importantly, TCR convergence has been proposed to arise in response to a broad range of tumor associated antigens (Table 1), including those derived from viral infection.

Table 1. Types of antigens measured by tumor mutation burden and TCR convergence.

<table>
<thead>
<tr>
<th>Antigen Source</th>
<th>Tumor Mutation Burden</th>
<th>TCR Convergence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-Synonymous Mutations</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Aberrant Post-Translational Modifications</td>
<td>✗</td>
<td>✔</td>
</tr>
<tr>
<td>Ectopic Gene Expression</td>
<td>✗</td>
<td>✔</td>
</tr>
<tr>
<td>Splicing Defects</td>
<td>✗</td>
<td>✔</td>
</tr>
<tr>
<td>Autoantigens</td>
<td>✗</td>
<td>✔</td>
</tr>
<tr>
<td>Virus-Derived Antigens</td>
<td>✗</td>
<td>✔</td>
</tr>
</tbody>
</table>

RESULTS – Elevated TCR Clonal Expansion and Convergence in CMV+ Donors

Figure 5. TCR evenness is reduced in CMV+ donors. Evenness values were lower in CMV+ subjects profiled using the TCRB-LR and SR assays, suggesting that CMV infection elicits T cell clonal expansion in asymptomatic subjects (one-sided student’s t-test).

Figure 6. TCR convergence is elevated in CMV+ donors. The aggregate frequency of convergent TCRs was higher in CMV+ subjects profiled using the TCRB-LR and SR assays, suggesting that T cell responses to chronic CMV infection give rise to convergent TCR responses (one-sided student’s t-test).

RESULTS – Combination of TCR Convergence and Evenness Improves Prediction of CMV Status

Figure 8. ROC curve for the prediction of CMV status using TCR convergence and evenness. ROC curves are presented for each feature alone, and for a logistic regression classifier (R caret package) trained using TCR evenness and convergence as features to predict response to immunotherapy. The combination of features improves the prediction of CMV status (AUC = .93)

CONCLUSIONS

• We identify reduced T cell evenness and elevated TCR convergence as features of chronic CMV infection.
• CMV infection appears to significantly alter the T cell repertoire, suggesting that CMV status may be required for proper interpretation of T cell clonal expansion and TCR convergence in the context of immunotherapy for cancer.

REFERENCES

2. Zhang et al. Peripheral blood TCR repertoire and evenness predict response to CTLA-4 monotherapy for cancer. SITC 2018
3. Storkus et al. Peripheral blood TCR chain convergence predicts response to dendritic cell-based immunotherapy in advanced-stage melanoma patients. SITC 2018
4. Looney et al. Evidence for antigen-driven TCR chain convergence in the melanoma infiltrating T cell repertoire. AACR 2018