
Clariom D microarrays provide a 
deep view of our transcriptome

In this technical note, we describe how:
• A deep understanding of the transcriptome comes 

from incorporating multiple gene models

• Comprehensive analysis of the complete transcriptome 
allows for discovery of new biomarkers associated with 
disease or physiological states

• Direct measurement of transcript abundance 
removes read depth considerations in a gene 
expression experiment

• Applied Biosystems™ Clariom™ D microarrays facilitate 
complete transcriptome analysis, including coverage of 
novel noncoding transcripts and splice isoforms

The search for complete transcriptome analysis 
The Human Genome Project was an enormous success. 
Not only did it promote our understanding of the content 
of genomes, but it also brought forth new technologies 
for collecting sequences and new algorithms for analyzing 
those sequences. But even as our tools for analyzing 
the human genome increased in power, the complexity 
of the genome continued to provide new surprises. For 
example, when the sequence of the human genome was 
first announced, the number of expressed protein-coding 
sequences was hypothesized to be around 22,000. As the 
analyses became more sophisticated, however, it was clear 
that the number of expressed sequences was much higher.  

Further analyses revealed that these expressed sequences 
included microRNAs (miRNAs), long noncoding RNAs 
(lncRNAs), long intergenic noncoding RNAs (lincRNAs), 
splice isoforms, and circular RNA. An international 
Sequencing Quality Control (SEQC) consortium 
showed that in complex transcriptomes, more than 
45,000 expressed sequences are detected when deep 
sequencing of up to a billion reads per sample is performed 
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[1]. More recently, the Genotype-Tissue Expression (GTEx) 
study analyzed the transcriptomes of 31 normal human 
tissues and found 43,126 genes and many novel isoforms 
of the genes [2]. Programs like the Human Cell Atlas aim 
to expand the human catalog of cells beyond the current 
~300 defined types [3], adding to the list of what can be 
expressed in a transcriptome.



Alternative splicing and a need for higher- 
resolution transcriptomics 
Modern high-resolution transcriptomics aims to resolve 
transcripts that are up- or downregulated in various 
tissues or cellular states. This regulation can be measured 
and is thought of as comprising both gene-level and 
transcript-level events. When we use the term “gene level”, 
we typically are attempting to measure the combined 
transcript-level events along a given gene locus. In higher 
organisms, almost all coding genes have multiple exons, 
and depending on the exon usage, the genes have the 
potential to generate many alternative transcripts (Figure 2).  
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Figure 2. Gene model of VMAT2, also known as SLC18A2, containing multiple isoforms seen in 6 different public databases. Probe selection 
regions on the Clariom D array, shown in yellow, can be utilized to detect alternative splicing events and overall gene-level expression.

Simply trying to measure up- or downregulation at the 
gene level often obscures the changes that happen at the 
splicing or exon level. Multiple forces can simultaneously 
regulate gene expression and splicing, such that a ratio 
of isoforms can be altered with or without changes in the 
overall combined gene-level expression estimates. How 
technologies take this complexity into consideration greatly 
impacts the inherent assumptions behind measurements 
used for assessing transcriptome change. Modern 
high-resolution transcriptomics measures exons or 
sub-exonic events to help ascertain splicing and overall 
gene-level changes.

Modeling gene structures
To better understand and manage all this information, 
several attempts have been made to catalog and model 
these expressed sequences. For example, the National 
Center for Biotechnology Imformation (NCBI) and the 
European Molecular Biology Laboratory (EMBL) are among 
the 16 public organizations that curate extensive databases 
of genes like RefSeq (NCBI) and Ensembl (EMBL).  
Surprisingly, these databases do not overlap as extensively 
as one might expect, since each is a product of its own 
distinct curation algorithms (Figure 1). For example, the 
SLC18A2 locus can be modeled as having different intron/
exon structures, depending on the modeling database 
used (Figure 2). Thus, a view of a transcriptome can be 
very limited if we consider only one of these 16 databases. 
We can obtain a comprehensive map of the transcriptome 
only by aggregating data from multiple sources. While the 
validity of every sequence contained in all these databases 
may be open to interpretation, the totality of possible 
expressed sequences provides a more complete and 
reliable view of expressed loci in our chromosomes.
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Figure 1. Overlap and uniqueness of RefGene (a subset of the RefSeq 
database), UCSC, and Ensembl annotation models of genes. In 
general, the different models have a high degree of overlap—there are 
21,958 genes common to all three databases. However, note that more 
than half of the genes in the Ensembl model are unique.



What has been increasingly clear as technologies mature 
is that alternative splicing is an important factor in many 
diseases. For example, cancer cells have been shown to 
increase proliferation, migration, and ultimately the rate of 
survival, through alternative splicing [4].

Most technologies used today are still focused on 
well-annotated genes. However, less well-known 
sequences, such as noncoding RNAs (ncRNAs), have 
been shown to regulate the expression of other genes 
and have been shown to be a rich source of biomarker 
discovery [5]. If we use technologies that survey 
uncharacterized gene loci or consider differential exon 
usage or splicing, the transcriptome comprises much 
more than the common set of ~20,000 well-annotated 
genes (Figure 3). A comprehensive biomarker survey 
should include exon resolution, noncoding RNAs, and 
undercharacterized genes. 

Methods for analyzing the transcriptome
Two techniques are commonly used to analyze changes 
in gene expression across a transcriptome. One method, 
using next-generation RNA sequencing (RNA-Seq), uses 
massively parallel sequencing to sample RNA sequences 
present in a library. NGS reads are aligned to the genome 
in RNA-Seq. The read depth is required to find low- 
abundance transcripts, which can lead to higher cost per 
sample, depending on the platform [6]. 
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Figure 3. Signature search space can be thought of as the number of transcripts evaluated with different technologies. Note that when sampling 
technologies such as Illumina™ NGS or Applied Biosystems™ SOLiD™ NGS RNA-Seq are used, very large numbers of events are needed to get deep 
information about the transcripts present in an experiment. In contrast, the Clariom D array is able to detect these events without sampling, and therefore 
similar depth can be achieved in one experiment. For details, see reference 1. 



Moreover, as with any sampling technology, the more 
sampling events that are collected, the better the precision 
of the measurement. For example, a simple experiment 
can be designed where the values of fold changes in 
defined samples can be predicted [1]. In an RNA-Seq 
experiment, the mean absolute deviation from the predicted 
value drops with increasing sequencing depth (Figure 4). 
One corollary of this is that more sampling is required in 
order to measure rare events with statistical confidence. 
Results from the SEQC consortium showed that deeper 
sequencing (increased sampling) of the transcriptome is 
needed to reveal low-abundance transcripts and splice 
junctions. Thus, read depth should be a key consideration 
when experimental goals include rarely expressed or 
low-abundance transcripts, coverage of introns, and 
nonpolyadenylated (i.e., noncoding) targets [1]. In another 
example, complex samples such as tumor biopsies may 
contain multiple cell types. The transcriptome contained in 
this sample is more complex than that of a homogeneous 
cell line, and therefore to precisely measure the gene 
expression changes in the variety of cells present, including 
the rare ones, more reads are required.

Another strategy for analyzing gene expression changes 
involves using DNA oligonucleotide microarrays that have 
been used to analyze gene expression changes across 
a very large number of targets for close to 30 years. The 
methods used to generate measurements and analyze the 
resulting large datasets have been well established and are 
the gold-standard approaches. Originally, such microarrays 
only analyzed a few thousand targets. However, technology 
advances have increased the number of targets that can 
be analyzed; currently, over 6 million discrete sequences 
can be analyzed on a single chip. Queries for a very large 
and complex set of sequences are possible with a single 
well-established workflow. Moreover, since expression 
data are captured directly from the signal on the chip, 
sampling is not required to increase precision or detect 
rare sequences. 
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Figure 4. Sequencing depth required for equivalent variation between the Clariom D array and RNA-Seq analysis. By evaluating a tissue mixture 
model in which RNA from two samples is mixed in known proportions, the mean absolute deviation (MAD) of expression was evaluated across all 
measured exons. (Modified data from reference 13.)



Clariom D applications: the answer to many 
research challenges 
The Clariom D microarrays represent the latest advances 
in the family of transcriptome analysis solutions (Table 
1). The sequences on the Clariom D arrays are based on 
coding and noncoding sequences culled from 16 different 
databases [7], representing over 540,000 transcripts in over 
6.7 million probes. Included in these sequences are probes 
for different splice isoforms, noncoding RNAs (pre-miRNAs, 
lincRNAs, Piwi-interacting RNAs (piRNAs)), and circular 
RNAs, as well as annotated and speculative sequences. 
Querying the multiple transcript models on the Clariom D 
chip in a single experiment helps ensure that important 
biomarkers are not missed. 

Applied Biosystems™ Transcriptome Analysis Console 
(TAC) Software was designed to quickly analyze the 
Clariom D array data. A report of all transcripts and 
the associated relative expression, using statistical and 
visualization tools, is provided from the data. Additionally, 
information regarding the role of these transcripts in 
biological pathways is provided. Together, the Clariom 
D solution of microarrays and software provides rapid, 
easy, and economical tools for obtaining meaningful gene 
expression data.

Microarrays continue to be an important tool for analyzing 
gene expression changes. For example, during the fiscal 
year of 2017–2018, the National Institute of Health (NIH) 
funded over 200 R01 grants that make use of microarrays 
to analyze functional changes from gene expression 
differences. In addition, the number of publications utilizing 
Clariom D technologies continues to grow. Some recent 
examples are highlighted below, and a comprehensive list 
is given in the reference section.

Example 1: Gene expression variation in adipose tissue
Metabolic differences may influence weight gain, but the 
tissues and mechanisms involved are not known. As part 
of a study of two different cohorts of women, Arner et al. 
[8] examined gene expression differences in subcutaneous 
adipose tissue in baseline and follow-up samples, using 
the Clariom D microarrays. They found that a subset of 
previously described lipolysis gene transcripts was lower in 
the weight-gain samples versus the weight-stable samples. 
They hypothesized that these results implicate inefficient 
lipolysis in subcutaneous fat cells as a contributor to long-
term weight gain.

Example 2: Systemic dysregulation in subjects with 
Parkinson’s disease
 Miki et al. [9] explored the hypothesis that Parkinson’s 
disease involves systemic dysregulation of the autophagic 
pathway. They collected peripheral blood mononuclear 
cells (PBMCs) from individuals with Parkinson’s disease 
and unaffected individuals, and used the Clariom D arrays 
to generate transcriptomic profiles from each group. Using 
TAC Software to analyze the results, they confirmed that 
genes involved in autophagy were indeed dysregulated in 
individuals with Parkinson’s disease. They also confirmed 
that genes in the lysosomal pathway, another catabolic 
mechanism, were also dysregulated. Together, these results 
suggest that systemic alteration of catabolic pathways may 
be a fundamental aspect of the disease.

Table 1. Clariom D microarrays vs. RNA-Seq 
solutions.

Clariom D RNA-Seq

Gene models 16 databases One database 
at a time

Method of 
measuring 
transcript levels

Direct Sampling

Data analysis TAC Software Varies



Example 3: Ex vivo breast cancer tumors
Eckhardt et al. [10] were interested in modeling breast 
cancer tumors grown ex vivo in 3 dimensions as a more 
accurate representation of breast tumors than cultured 
cells. To show the validity of their model, they needed to 
show that the ex vivo–grown tumor mass had biological 
characteristics similar to those of the starting tumor. They 
used the Clariom D arrays to verify that the correlation 
between the gene expression patterns in the ex vivo–grown 
tumors and the original tumor was highly significant, even 
when noncoding RNAs were included in the analysis. Thus, 
they were able to rapidly verify that their ex vivo tumor 
model could be used as a surrogate for the original tumor.

Example 4: lncRNA analysis to examine olfactory 
function decline
A common feature of aging is the decline in sensory 
function. To begin to understand olfactory decline, Wang 
et al. [11] examined expression profiles in young and aged 
mouse olfactory bulbs using mouse Clariom D microarrays. 
They obtained distinct sets of coding and noncoding RNAs 
that were differentially expressed in the two tissue samples 
from different sources. By performing pathway analysis of 
the differentially expressed genes, they hypothesized that 
a decline in olfactory function may be inversely correlated 
with the expression of some lncRNAs in the neuroactive 
ligand–receptor interaction pathway.

Summary 
Clariom D microarrays are a next-generation, cost-
effective solution for comprehensive gene expression 
analysis. Leveraging RNA discoveries over several 
years and the information available in several public 
databases, the Clariom D microarrays enable 
investigators to find coding, noncoding, or as yet 
unannotated events with a simple and easy workflow 
and at exon resolution. Transcriptome complexity or 
sequencing depth considerations are not a concern 
with microarrays. Microarrays are built on trusted 
and well-understood chemistries and algorithms for 
analyzing gene expression differences. The Clariom 
D microarrays incorporate information from a large 
number of different transcript models, giving confidence 
that important transcript isoforms or noncoding 
sequences are analyzed. The TAC Software facilitates 
interpretation of the gene expression data generated 
by the Clariom D microarrays. Some researchers 
recently have stated that “modern microarrays can 
still outperform sequencing for standard analysis of 
gene expression in terms of reproducibility and costs” 
[12]. Together, these features make the Clariom D 
microarrays an ideal and economical choice for gene 
expression research.

Ordering information

Product Cat. No.

Clariom D Assay, human (includes the whole-transcriptome Clariom D microarray  
and the GeneChip WT Pico reagent kit) 902922

Transcriptome Analysis Console (TAC) Software 4.0  NA
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