reproductive health

applied biosystems ion torrent

Evolution of cytogenetic techniques

20,000 genes 46 chromosomes 23 pairs

Karyotyping | FISH | Microarrays | NGS

What is cytogenetics?

The study of chromosomal changes in cells.

Glossary of genetic terms

Chromosome

A combination of nucleic acids and protein that contains genetic information

Nucleotide

A basic building block of nucleic acids, found in DNA and RNA

Genome

A complete set of DNA found in cells with nuclei, including all genes

Mutation

A change to one's DNA sequence as a result of cell division, mutagens, or infection

Congenital defect

An abnormality present at birth that can be a result of genetic or chromosomal mutations

Key contributors

Karl Nägeli (1817–1891) Swiss botanist

Published a paper on the development of pollen and the "transitory cytoblasts" that were later identified as chromosomes.

Walther Flemming (1843–1905) German anatomist

Observed and described the behavior of chromosomes during cell division.

Joe Hin Tjio, PhD (1919–2001)

American geneticist

Found that human cells contain 46 chromosomes arranged as 23 pairs.

Joe W. Gray, PhD & Daniel Pinkel, PhD

Applied FISH in a clinical setting to visualize chromosomes.

Edwin Southern, PhD

Filed the first patent application for *in situ* synthesized oligonucleotide microarrays in the United Kingdom.

Innovation and discovery

1842	Nägeli identifies chromosomes for
1870	Flemming uses aniline dye to obse
1888	Waleyer-Hartz coins the term "chro
1956	Tjio and Levan determine that hum
1959	Lejeune discovers that people with chromosome.
1960	The first International System for C
1971	Scientists develop G-banding, C-b
1980	Bauman, Wiegant, Borst, and van
1986–88	Pinkel and Gray add interphase ar
1988	Southern files a UK patent applica microarrays.
1991	Fodor and colleagues publish the
1995	Schena publishes the first use of n
1996	Schrock and Ried describe multice
2010	The American College of Medical (with chromosomal microarrays as
2012	Microarray technology is applied to
2013	ACMG recommends the use of pro- fetus with one or more major struc

the first time.

erve chromosomes.

romosomes."

mans have 46 chromosomes.

h Down syndrome (trisomy 21) have an extra

Chromosome Nomenclature (ISCN) conference is held.

banding, and reverse banding.

Dujin use FISH (fluorescence in situ hybridization).

nd metaphase FISH for clinical diagnostics.

ation for in situ synthesized, oligonucleotide

photolithographic array fabrication method.

microarrays for gene expression analysis.

color spectral karyotyping.

Genetics (ACMG) recommends replacing karyotyping a first-line postnatal test.

o prenatal diagnostics research.

renatal chromosomal microarray analysis to monitor a ctural abnormalities.

Current and future applications

Building on history and forging new paths

Technologies have been applied and advanced for more than a century, helping scientists understand chromosome defects and rearrangements. Their ability to examine genetic material at the nucleotide level has opened a world of exciting possibilities.

Genetic diseases

- Birth defects
- Fetal loss
- Developmental delays

Genetic diseases = mutation in chromosomal structure

Common genetic disorders

- Down syndrome
- Turner syndrome
- Cystic fibrosis
- Huntington's disease

Chromosome research

- White blood cells
- Bone marrow cells
- Fetal cells

Chromosomes are often extracted from live cells

Early visualization: karyotyping

- Aniline dyes were used to witness chromosome behavior during mitosis
- Techniques like G-banding, C-banding, and Q-banding were established
- Limitations: karyotyping cannot detect small SNV abnormalities and it requires cell culture

FISH

- First described in the late 1960s and later achieved widespread use
- Helps detect single genes, specific regions, and whole chromosomes
- Offers speed, sensitivity, stability, and convenience
- Does not allow for efficient break point mapping for chromosome translocations

Comparative genomic hybridization

- Has better resolution than G-banding or FISH
- Used to detect chromosomal copy number variations (CNVs)
- Can help find abnormalities in prenatal and neonatal genomes
- Cannot be used to identify structural chromosome aberrations

Microarrays

- Medical genetics researchers identified single-nucleotide polymorphisms (SNPs)
- Combined CGH with microarrays to catalog and assess variations in human genetics
- Modern CNV and SNP probe arrays offer greater insight across the whole genome
- Cannot detect balanced translocations

Next-generation sequencing

- Custom testing options like focused-exome and whole-exome sequencing
- High levels of data complexity

• Spectral karyotyping and multicolor FISH (mFISH) revolutionized the field in the 1970s and 1980s

• Short- and long-read sequencing continue to drive variant discovery in cytogenetic research

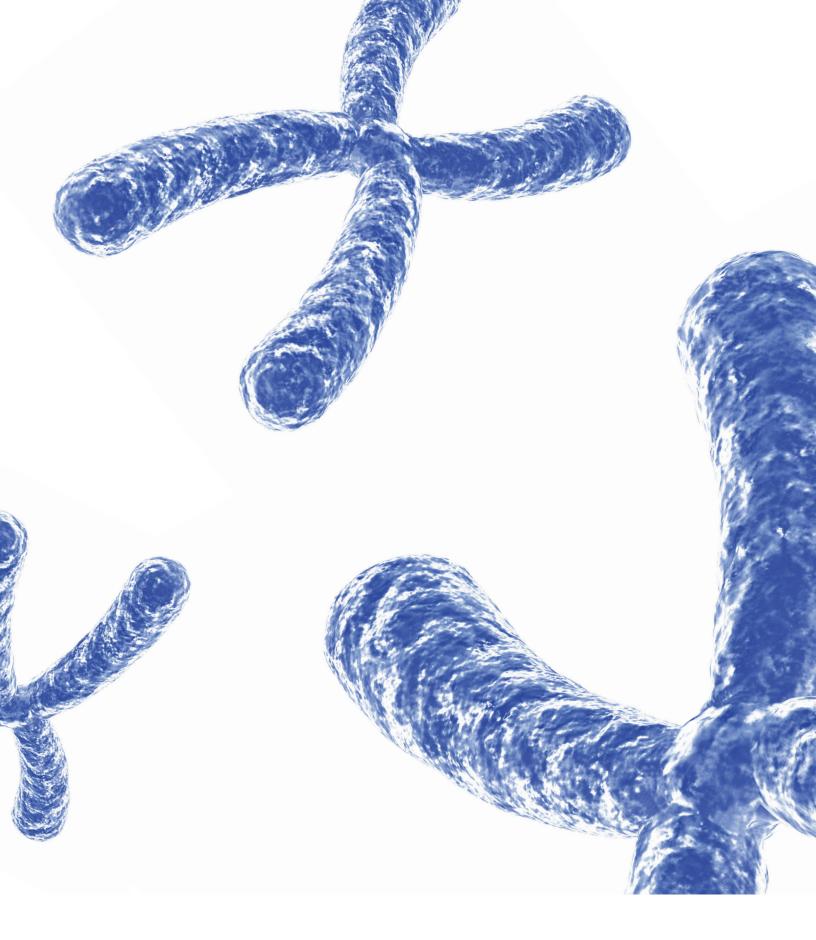
An evolving field

The field of cytogenetics is important for scientific research and medical diagnoses, and it can help us understand reproductive health, cancer, and other diseases. To date, technological advances have helped detect gene alterations, SNPs, numerical chromosome alterations, and more.

Using aniline dyes, Flemming first observed thread-like structures in the nucleus. During the 1870s, he also witnessed the behavior of chromosomes during mitosis. Flemming called the structures chromatin, but the name was later changed based on observations by Waldeyer-Hartz.

Between 1960 and 1970, techniques like quinacrine fluorescence staining (Q-banding), centromeric banding (C-banding), and Giemsa banding (G-banding) were established. At this point, an international standard of quality, accuracy, and consistency across laboratories was needed. This led to the development of the ISCN in 1978.

Since the early 1970s, FISH has become a popular molecular cytogenetic technique. First described in the late 1960s, it moved from using radioactive isotopes to fluorescence and achieved widespread use. It is currently used in a variety of biology-related disciplines to help detect single genes, specific regions, and whole chromosomes.


The rise of comparative genomic hybridization (CGH) can be attributed to its resolution; the results are better than G-banding or FISH. CGH is used to detect chromosomal CNVs and can help find abnormalities in prenatal and neonatal genomes.

With the help of genome-wide microarrays, medical genetics researchers were able to identify SNPs. Combining CGH with microarrays let researchers catalog and assess variations in human genetics.

Additional FISH techniques, including spectral karyotyping and multicolor FISH (mFISH), have also helped revolutionized the field, and they have many applications in pre- and post-natal diagnostics.

With that said, technological advances like these will continue to lead to new discoveries in cytogenetics research.

