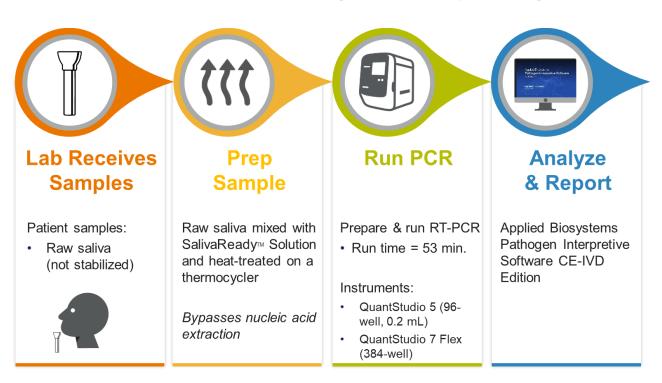
# Workflow and Performance of the TaqPath COVID-19 Fast PCR Combo Kit 2.0

Enabling fast, trusted COVID-19 test results from raw saliva - an ideal choice for high-frequency testing

# Introduction

The Applied Biosystems<sup>™</sup> TaqPath<sup>™</sup> COVID-19 Fast PCR Combo Kit 2.0 is a CE-IVD marked, real time reverse transcription polymerase chain reaction (RT PCR) test intended for the qualitative detection of nucleic acid from SARS-CoV-2 in raw saliva in sterile containers from individuals suspected of COVID-19 by their healthcare provider (please refer to the Instructions for Use for applicable intended use).

The TagPath COVID-19 Fast PCR Combo Kit 2.0 utilizes an advanced assay design to compensate for SARS-CoV-2 mutations and to ensure accurate results even as the virus that causes COVID-19 continues to mutate.

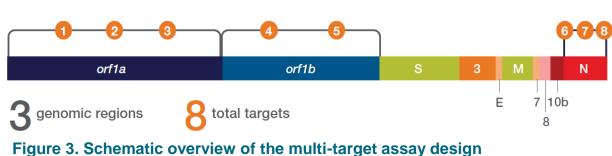

The TaqPath COVID-19 Fast PCR Combo Kit 2.0 utilizes raw saliva treated with SalivaReady<sup>TM</sup> solution directly, omitting the need for sample extraction and offering a sample-to-result turnaround time of approximately 2 hours. The use of saliva as sample matrix not only simplifies sample collection, but it also reduces costs when compared to using nasopharyngeal swab for SARS-CoV-2 detection<sup>[1]</sup>

#### The TagPath COVID-19 Fast PCR Combo Kit 2.0 delivers fast, trusted COVID-19 test results from raw saliva ideal for widespread, high frequency testing.



Figure 1. TaqPath COVID-19 Fast PCR Combo Kit 2.0 (A51605) Components for 1,000 reactions

# Simplified workflow enables high-frequency testing




# Figure 2. Schematic Overview of the TaqPath COVID-19 Fast PCR Combo Kit 2.0 workflow.

- The turnaround time of the TagPath COVID-19 Fast PCR Combo Kit 2.0 from sample to result is approximately 2 hours.
- Pathogen Interpretive Software automatically converts genetic analysis data into reporting, to reduce interpretation errors

# Advanced assay design compensates for current and future **SARS-CoV-2** mutations

- Unique fluorescence channel for each genomic region (*orf1a*, *orf1b*, and N genes)
- Redundancy with multiple targets (amplicons) per genomic region
- 8 targets spanning 3 genomic regions compensates for emerging mutations
- Excludes the S-gene, which has a high risk of mutation
- Human RNase P gene serves as an endogenous specimen control



# Performance

# Limit of detection (LoD)

The LoD study established the lowest SARS-CoV-2 viral concentrations (Genomic Copy Equivalents or GCE/mL) that can be detected at least 95% of the time. Pooled, contrived raw saliva samples were spiked with gamma-irradiated SARS-CoV-2 virus\* at various concentrations. The LoDs in Table 1 were confirmed with 20 replicates and 100% detection.

\*Isolate USA-WA1/2020 (BEI Resources, PN NR-52287, LN 70033322)

# Table 1. Limit of detection

| Limit of Detection |
|--------------------|
| 1,000 GCE/mL       |
| 750 GCE/mL         |
|                    |

# **Cross-reactivity**

Cross reactivity was assessed in vitro using microbial genomic material and in silico with BLAST-based sequence homology alignment to known microbial sequences (Table 2).

#### Table 2. Summary of cross reactivity testing and analysis

| In vitro (wet-lab testing)                                         | In silico (seque                               |
|--------------------------------------------------------------------|------------------------------------------------|
| Tested RNA or DNA from 17 organisms<br>(4 bacteria and 13 viruses) | BLAST sequence hom<br>(2 fungi, 27 viruses, an |
| No cross reactivity detected                                       | No cross-reactivity pre                        |

\*SARS-CoV showed a higher level of identity with the N gene and ORF1b assays but is not predicted to interfere with SARS-CoV-2 detection. Note: SARS-CoV has not been in circulation since the 2003 outbreak.

# ence homology)

nology to 55 organisms: nd 26 bacteria)

redicted\*

# **Reactivity (Inclusivity)**

In silico analysis executed using 1,802,689 complete SARS-CoV-2 genomes from the GISAID database (June 09, 2021).

• Positive match if amplification expected for at least one assay per target for at last two targets.

Based upon BLAST analysis, the TagPath COVID-19 Fast PCR Assay 2.0 maps with 100% homology to 100% of SARS-CoV-2 genome sequences.

# Interfering substances

The impact of potential interfering substances was tested by adding substances to saliva specimens spiked with gamma-irradiated SARS-CoV-2 virus\* at 3X the limit of detection as compared to a no-interferent control.

No false-negative or false-positive interference was observed for any interferant

#### Table 3. Summary of interfering substances testing

|                      | Agreement with expected results |                                          |                         |                                          |
|----------------------|---------------------------------|------------------------------------------|-------------------------|------------------------------------------|
| Interferent*         | Positive for SARS-CoV-2         |                                          | Negative for SARS-CoV-2 |                                          |
|                      | Positive<br>Agreement           | Number of<br>positive /<br>Number tested | Negative<br>Agreement   | Number of<br>negative /<br>Number tested |
| Mucin bovine**       | 100%                            | 6/6                                      | 100%                    | 6/6                                      |
| Mucin porcine        | 100%                            | 6/6                                      | 100%                    | 6/6                                      |
| Blood                | 100%                            | 6/6                                      | 100%                    | 6/6                                      |
| Afrin Nasal<br>Spray | 100%                            | 6/6                                      | 100%                    | 6/6                                      |
| NasoGel              | 100%                            | 6/6                                      | 100%                    | 6/6                                      |
| Lozenge              | 100%                            | 6/6                                      | 100%                    | 6/6                                      |
| Sore Throat<br>Spray | 100%                            | 6/6                                      | 100%                    | 6/6                                      |
| Toothpaste           | 100%                            | 6/6                                      | 100%                    | 6/6                                      |
| Mouthwash            | 100%                            | 6/6                                      | 100%                    | 6/6                                      |
| Nicotine             | 100%                            | 6/6                                      | 100%                    | 6/6                                      |
| hgDNA                | 100%                            | 6/6                                      | 100%                    | 6/6                                      |
| No Interferent       | 100%                            | 6/6<br>es_PN_NR-52287   N                | 100%                    | 6/6                                      |

\*Isolate USA-WA1/2020 (BEI Resources, PN NR-52287,LN 70039067) was used for all interfering substances except for Mucin bovine, which was tested using PN NR-522287, LN 70033322 \*\*Mucin bovine = Mucin: bovine submaxillary gland, type I-S; Mucin porcine = Mucin: porcine stomach - type II; Afrin Nasal Spray = Afrin® Original nasal spray; NasoGel = NeilMed® NasoGel®; Lozenge = Cepacol®(benzocaine/menthol lozenges); Sore Throat Spray = Chloraseptic® Sore Throat spray/solution; Toothpaste = Toothpaste (Colgate); Mouthwash = Crest mouthwash; hgDNA = Human genomic DNA

# **Clinical Evaluation**

A clinical evaluation study was performed to evaluate the performance of the TagPath COVID-19 Fast PCR Combo Kit 2.0 using archived paired raw saliva and nasopharyngeal (NP) swab specimens from individuals with COVID-19 symptoms. The raw saliva specimens were tested using the TagPath COVID-19 Fast PCR Combo Kit 2.0. The NP specimens were tested using an FDA EUA-Authorized comparator assay.

Positive Percent Agreement (PPA) and Negative Percent Agreement (NPA) were calculated relative to the comparator method.

# **Clinical Evaluation - continued**

The results are shown in Table 4. TagPath<sup>™</sup> COVID-19 Fast PCR Combo Kit 2.0 has a positive percent agreement (PPA) and negative percent agreement (NPA) of ≥95%.

#### Table 4. Summary of clinical evaluation

TagPath™ COVID-19 Fast PCR Combo Kit 2. (QuantStudio™ 5) TagPath™ COVID-19 Fast PCR Combo Kit 2. (QuantStudio<sup>™</sup> 7 Flex)

# Conclusions

The TagPath COVID-19 Fast PCR Combo Kit 2.0 is your choice for COVID-19 testing using raw saliva as a sample matrix:

- From raw saliva direct-to-PCR workflow (no RNA extraction required) • Simplifies sample collection: saliva is easily self-collected, reducing both the exposure to health care providers and the need for personal protective equipment (PPE)

  - Saliva collection can save significant amounts of money compared to using nasopharyngeal swab for SARS-CoV-2 detection<sup>[1]</sup>
- Offers a simple, convenient and efficient workflow to deliver trusted results quickly • Turnaround time from sample to result in only 2 hours
- Innovative, multi-target assay design compensates for emerging SARS-CoV-2 mutations
- Accurate detection provides increased confidence in results. Outstanding performance (LoD of 750–1,000 GCE/mL; PPA and NPA > 95%)
- Applied Biosystems Pathogen Interpretive Software CE-IVD edition: • Helps decrease analysis and interpretation time and risk of user interpretation error

# REFERENCES

1. Bastos, M. et al. Annals of Internal Medicine (2021): doi:10.7326/M20-6569.

# **TRADEMARKS/ LICENSING**

All trademarks are the property of Thermo Fisher Scientific and its subsidiaries unless otherwise specified. Afrin is a trademark of Bayer Healthcare LLC. NeilMed and Nasogel are trademarks of NeilMed Products, Inc. Cepacol is a trademark of Reckitt Benckiser LLC. Chloraseptic is a trademark of Medtech Products Inc. Colgate is a trademark of Colgate-Palmolive Company. Crest is a trademark of The Procter & Gamble Company.



|    | Comparator Method |                   |         |                   |  |  |  |  |
|----|-------------------|-------------------|---------|-------------------|--|--|--|--|
|    | PPA (%)           | 95%CI             | NPA (%) | 95%CI             |  |  |  |  |
| .0 | 96.8%             | 83.3% to<br>99.9% | 97.4%   | 86.5% to<br>99.9% |  |  |  |  |
| .0 | 96.8%             | 83.3% to<br>99.9% | 100.0%  | 90.9% to<br>100%  |  |  |  |  |

• Enables widespread, high-frequency testing

