Detection of His-tagged fusion proteins

Key Words
Thermo Scientific™ Nunc™ Immobilizer™ Ni-Chelate plates, coated plates, ELISA, His-tagged protein, fusion proteins, competitor analysis, low detection limit, high signal/noise ratio.

Goal
The goal of this application note is to detect His-tagged fusion proteins in Nunc Immobilizer Ni-Chelate plates compared to competitor plates.

The Nunc Immobilizer Ni-Chelate plates are designed for optimal binding of His-tagged fusion proteins without the need for purification prior to application.

Detection limit is very low. The functional Ni-Chelate surface is based on patented technology for covalent coupling of ligands to polymer surfaces via a spacer.

Detection of histidine (His)-tagged fusion proteins on the Nunc Immobilizer Ni-Chelate plate compared with competitor plates.

Recommended protocol for the detection of His-tagged fusion proteins

Reagents and materials
• Nunc Immobilizer Ni-Chelate plate
• Coupling buffer: 0.01 M KCl
• Washing buffer: PBST (Phosphate Buffered Saline (pH 7.2) containing 0.05% (v/v) Tween 20)
• Chromogen/substrate: 3,3’, 5,5’ tetramethylbenzidine (TMB)
• Stop solution: Sulphuric acid 0.5 M

Assay procedure 96 well transparent plates
• The plates are pre-washed three times with 300 µL/well PBST.
• Purified or crude His-tagged fusion protein (100 µL/well) is added to the Immobilizer Ni-Chelate plates in concentrations from 0.01 to 1 µg/mL. A control without His-tagged fusion protein is also included.

• The plates are incubated for two hours at room temperature with gentle agitation (100 rpm).
• The plates are washed three times with 300 µL/well PBST.
• Antibody against the fusion protein conjugated to horseradish peroxidase (HRP) (100 µL/well) diluted e.g. 1:5000 in PBST is added to the plates.
• The plates are incubated for one hour at room temperature with gentle agitation (100 rpm).
• The plates are washed three times with 300 µL/well PBST.
• TMB (100 µL/well) is added to the plates.
• The plates are incubated for 10 minutes at room temperature in the dark.
The enzyme reaction is stopped with 0.5 M sulfuric acid (100 µL/well).

The absorbance is read at 450 nm using an ELISA reader.

Application example

A comparison of the performance of the Immobilizer Ni-Chelate plate and other commercially available plates was performed.

Three different preparations (A, B, C) of a fusion protein h-2-microglobulin (h-2-m 12 kDa) tagged with six His residues were tested.

A. A crude preparation of h-2-m tagged with a sequential His tag (crude His-h-2-m).

B. A purified preparation of h-2-m tagged with a sequential His tag (purified His-h-2-m).

C. A purified preparation of h-2-m tagged with a non-sequential His tag (purified HAT-h-2-m).

The protein was tagged with a sequence of 20 amino acid, which included 6 histidines uniformly distributed throughout the sequence.

The following assay was conducted on the Immobilizer Ni-Chelate plate:

- The plates were pre-washed three times with 300 µL/well PBST.
- A His-tagged fusion protein (A, B or C) was applied to the Immobilizer Ni-Chelate plates (100 µL/well) in ten concentrations of a 1:2 dilution (500 ng–0.98 ng/mL).
- The plates were incubated for two hours at room temperature with gentle agitation (100 rpm).
- The plates were washed three times with 300 µL/well PBST.
- Antibody against the fusion protein conjugated with HRP (HRP conjugated to anti-h-b-2-m) diluted in PBST was added to the plates (100 µL/well). The antibody was diluted to an appropriate concentration, here 1:5000.
- The plates were incubated for one hour at room temperature with gentle agitation (100 rpm).
- The plates were washed three times with 300 µL/well PBST.
- TMB (100 µL/well) was added to the plates.
- The plates were incubated for 10 minutes at +20-25°C in the dark.
- The enzyme reaction was stopped with 0.5 M sulfuric acid (100 µL/well).
- The absorbance was read at 450 nm.

The assays on the competitor plates were performed using the protocol supplied by the different competitors.

Figs. 1 and 2 illustrate the OD response of a 1:2 dilution curve of the same fusion protein (crude His-b-2-m or purified His-b-2-m) applied to a Immobilizer Ni-Chelate plate, as well as to plates from competitors A, B and C.

As seen in Figs. 1 and 2 the performance of the Immobilizer Ni-Chelate plate is superior to the performance of the competitor plates regardless of the degree of purification of the His-tagged fusion protein.

Even when testing an unpurified preparation of a cell lysate using the Immobilizer Ni-Chelate plates, very small concentrations of His-tagged fusion protein (0.5 ng per well) can be detected assuming an OD cut off value of 0.5.

![Graph](image.png)

Fig. 1.

Detection of a His-tagged fusion protein from a crude cell lysate preparation (crude His-b-2-m, preparation A). The His-tagged fusion protein was added in a 1:2 dilution to the plates. As a negative control, buffer without His-tagged fusion protein was added.
Fig. 3 illustrates a 1:2 dilution curve of the fusion protein tagged with an non-sequential His tag (purified HAT-b-2-m, preparation C). The purified HAT-b-2-m was applied to a Immobilizer Ni-Chelate plate, as well as to plates from competitors A, B and C. As seen in Fig. 3, the performance of the Immobilizer Ni-Chelate plate is superior to the performance of the competitor plates.

Conclusion

As seen from Figs. 1 to 3, the Immobilizer Ni-Chelate plate shows a higher OD response when compared to the competitor plates. Also the calculated CV% is lower on the Immobilizer Ni-Chelate plate than on many competitor plates (data not shown).

This finding is true regardless of the histidine tagged fusion protein used (His in sequence or in an non-sequential distribution as well as a crude preparation of the His-tagged fusion protein).

Even when a fusion protein is tagged with a non-sequential His tag (HAT-b-2-m), the fusion protein binds equally well to the immobilizer Ni-Chelate plate. Using the competitor plates the HAT-b-2-m does not bind as well as the His-b-2-m.

Acknowledgements

The His-tagged fusion proteins were kindly provided by Professor Søren Buus, Institute for Medical Microbiology and Immunology, Copenhagen University, Denmark.

Credits

Assay and protocol for Ni-Chelate plate preparation was designed by Eva Jauho and Maria Nielsen.
References

References where covalent binding methods have been used
Thermo Scientific™ CovaLink™

Immobilizer

thermoscientific.com/oemdiagnostics

© 2014 Thermo Fisher Scientific Inc. All rights reserved. “Immobilizer” is a trademark of Exiqon A/S, Vedbaek, Denmark. The product is produced under license from Exiqon A/S - EP 0820483 and foreign applications and patents. “Tween” is a registered trademark of Uniqema Americas. All other trademarks are the property of Thermo Fisher Scientific Inc. and its subsidiaries.

ANZ: Australia: 1300 735 292, New Zealand: 0800 933 966; Asia: China Toll-free: 800-810-5118 or 400-650-5118; India: +91 22 6716 2200, India Toll-free: 1 800 22 8374; Japan: +81-3-5826-1616; Other Asian countries: +65 68729717
Europe: Austria; +43 1 801 40 0; Belgium; +32 2 482 30 30; Denmark; +45 4631 2000; France; +33 2 2803 2180; Germany; +49 6184 90 6000; Germany Toll-free: 0800 1-536 376; Italy; +39 02 95059 554; Netherlands: +31 76 571 4440; Nordic/Baltic countries: +358 9 329 10200; Russia/CIS: +7 (812) 703 42 15; Spain/Portugal: +34 93 223 09 18; Switzerland: +41 44 454 12 22; UK/Ireland: +44 870 609 9203
North America: USA/Canada +1 585 586 8800; USA Toll-free: 800 625 4327; Canada Toll-free: 1 800 625 4327
South America: USA sales support: +1 585 889 7198 Countries not listed: +49 6184 90 6000 or +33 2 2803 2000

TILSPNLNC1N47 0214