Comparison of StepOne Real-Time PCR System to the 7300 **Real-Time PCR System**

Introduction

We are committed to designing our products with the environment in mind. This fact sheet provides the rationale behind the environmental claims that the Applied Biosystems[™] StepOne[™] Real-Time PCR System is more energy efficient, utilizes less raw material, and is designed to be upgradeable as compared to its predecessor, the 7300 Real-Time PCR System.

Product description

The StepOne Real-Time PCR System makes it simple and easy to get publication-ready, high-quality real-time PCR results on day one. This simple 48-well, 3-color real-time PCR system is designed with a powerful yet user-friendly interface for researchers of all experience levels. The StepOne Real-Time PCR System can be upgraded to an Applied Biosystems[™] StepOnePlus[™] Real-Time PCR System, minimizing waste while still meeting our customers' needs.

Green features

More energy efficient

The StepOne Real-Time PCR System draws 29% less energy when idling (Table 1) and 72% less energy to process one

Table 1. Energy usage during idling.

sample plate (Table 2), compared to the 7300 Real-Time PCR System. To compare energy usage during a run, the default protocols for each instrument were used, despite the differences in well number, volume, and run time, to better represent actual use. For the StepOne instrument, each well of a 48-well plate was prepared with 10 µL of Applied Biosystems™ TaqMan[™] Fast Universal PCR Master Mix (2X) and 10 μ L water, for a total of 20 μ L. The default "Fast Protocol" was selected. For the 7300 instrument, each well of a 96-well plate was prepared with 12.5 µL of Applied Biosystems[™] TaqMan[™] Gene Expression Master Mix (2X) and 12.5 µL water, for a total of 25 µL. The default "Standard Protocol" was selected.

Instrument/model	Average power usage (kW)	Run time (hr)	Energy consumption (kW-hr)
7300 system	0.17	1.00	0.17
StepOne system	0.12	1.00	0.12
Energy conservation			29%

applied biosystems

Less waste

The StepOne Real-Time PCR System contains less material than its predecessor, the 7300 Real-Time PCR System. Furthermore, the instrument has an 18% smaller footprint, which helps improve laboratory space efficiency (Table 3).

Extended life

The StepOne Real-Time PCR System was engineered to be upgradable to the StepOnePlus Real-Time PCR System. The instrument can be sent in for an upgrade that converts it to a StepOnePlus system by replacing the 48-well block with a 96-well Applied Biosystems[™] VeriFlex[™] Block and expanding the dye flexibility to four colors. The color of the bar above the block is also updated to indicate that the instrument is now a StepOnePlus system. All other components remain the same, and the instrument keeps its original serial number. Thus, as customers' needs grow, we can support them while minimizing hazardous waste.

Table 2. Energy usage during a run.*

Run protocol	Average power usage (kW)	Run time (hr)	Energy consumption (kW-hr)
7300 system, default "Standard Protocol"	0.28	1.63	0.46
StepOne system, default "Fast Protocol"	0.20	0.63	0.13
Energy conservation			72%

* The instruments completed a 48- or 96-well sample plate run from a heated start (i.e., the heated cover was at 105°C when the run was started). We recommend starting the protocol after the instrument has been in a heated state. Both instruments were set up at 100 VAC at 60 Hz.

Table 3. Instrument weight and footprint.

	Weight (kg)	Footprint (cm²)
7300 Real-Time PCR System	27.8	1,530 cm² (34 cm x 45 cm)
StepOne Real-Time PCR System	23.6	1,259 cm² (25 cm x 51 cm)
Reduction	15%	18%

Find out more at thermofisher.com/greenerbydesign

applied biosystems

For Research Use Only. Not for use in diagnostic procedures. © 2024 Thermo Fisher Scientific Inc. All rights reserved. All trademarks are the property of Thermo Fisher Scientific and its subsidiaries unless otherwise specified. TaqMan is a trademark of Roche Molecular Systems, Inc., used under permission and license. CO128446 EXT 1123