The information in this guide is subject to change without notice.

DISCLAIMER: TO THE EXTENT ALLOWED BY LAW, LIFE TECHNOLOGIES AND/OR ITS AFFILIATE(S) WILL NOT BE LIABLE FOR SPECIAL, INCIDENTAL, INDIRECT, PUNITIVE, MULTIPLE, OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING FROM THIS DOCUMENT, INCLUDING YOUR USE OF IT.

Revision history: Pub. No. 100036373

<table>
<thead>
<tr>
<th>Revision</th>
<th>Date</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>26 February 2018</td>
<td>Revision for v2.0 software. Add SAE functionality, auto alignment, and manual multi-peak alignment.</td>
</tr>
<tr>
<td>B</td>
<td>20 March 2017</td>
<td>Revision for v1.1 and v1.1.1 software. Update: screen shots, search, import samples, analysis status, analysis method parameters, view results tables, view electropherograms, adjust delimiters and baseline. Add new information for create and manage bins, manage resources. Add new information for normalization and align peaks.</td>
</tr>
<tr>
<td>A</td>
<td>15 February 2016</td>
<td>New document for v1.0 software.</td>
</tr>
</tbody>
</table>

NOTICE TO PURCHASER: DISCLAIMER OF LICENSE: Purchase of this software product alone does not imply any license under any process, instrument or other apparatus, system, composition, reagent or kit rights under patent claims owned or otherwise controlled by Life Technologies Corporation, either expressly, or by estoppel.

TRADEMARKS: All trademarks are the property of Thermo Fisher Scientific and its subsidiaries unless otherwise specified.

©2018 Thermo Fisher Scientific Inc. All rights reserved.
CHAPTER 1 Get started .. 6
 GlycanAssure™ Data Analysis Software ... 6
 System overview .. 6
 Workflow .. 7
 Set preferences .. 11

CHAPTER 2 Work with projects .. 12
 Create, open, or save a project ... 12
 Search for a project .. 12
 Import samples ... 13
 Analyze samples .. 13
 View a report ... 13
 Analysis status .. 14
 Processing flags ... 14

CHAPTER 3 Work with analysis methods 15
 View, assign, or remove an analysis method 15
 Filter analysis methods .. 15
 Analysis method parameters .. 16

CHAPTER 4 Analyze and review results 20
 Analyze samples .. 20
 Align peaks automatically ... 20
 (Optional) Align peaks manually ... 21
 Create and manage bins ... 23
 Create new bins manually .. 23
 Create new bins with autobinning .. 24
 Apply, save, or shift a panel of bins ... 25
 Display bin information in the plot ... 25
 Edit, unassign, or delete bins .. 26
 Remove P2 peak labels ... 26
Examine results ... 26
View results tables ... 26
View electropherogram plots .. 27
Zoom and unzoom ... 28
Adjust delimiters (peak start/end) and baseline 29
Search for peak calls (results) .. 30
Display sample info, raw data, or EPT data 31
Compare processing ... 31
View data trending ... 32
Create sample groups ... 33
Override Sizing Quality [SQ] .. 33
Analysis flags ... 34
Plot toolbar ... 35
Examine the size standard plot and curve 36
Specify peak labels ... 37
Set the peak label to display .. 37
Remove P2 peak labels ... 37
Print, export, or save (.pdf, .png) results 38

CHAPTER 5 Manage resources ... 39

Manage projects ... 39
 Edit project name or description ... 39
 Define sample path .. 39
 Set a project as a favorite .. 39
 Save a copy of a project ... 40
 Export a project ... 40
 Import a project ... 40
 Delete a project .. 41

Manage analysis methods ... 41
 Create an analysis method .. 41
 Open an analysis method ... 41
 Save a copy of an analysis method 41
 View or edit an analysis method .. 41
 Export an analysis method .. 41
Import an analysis method .. 42
Delete an analysis method .. 42
Manage table settings .. 42
Create or apply table settings ... 42
Import, export, save a copy, or delete table settings 42
Manage size standards ... 43
Create a size standard definition ... 43
Import, export, save a copy, or delete a size standard 43
Manage panels .. 43
Create a panel .. 43
Import, export, save a copy, or delete a panel 43

CHAPTER 6 Use security, audit, and e-signature (SAE) functions ... 44
Administrators overview of SAE functions .. 44
Users overview of SAE functions ... 45
Security ... 46
Log in .. 46
Exit .. 47
View and change the user profile .. 47
Lock a session ... 48
Change your password when it expires 48
Audit ... 49
View, generate, and print object audit logs 49
View, generate, and print event audit logs 49
Electronic signature .. 51
Guidelines for multiple e-signatures ... 51
E-sign a project .. 51
E-sign a project report ... 51
View, generate, export, and print e-signature logs 51

CHAPTER 7 Troubleshooting .. 53
Troubleshooting .. 53
Documentation and support .. 55
Related documents ... 55
Customer and technical support ... 55
Limited product warranty ... 56
Index ... 57
GlycanAssure™ Data Analysis Software

The GlycanAssure™ Data Analysis Software is a glycan analysis software solution. The software uses a database host to store projects and settings.

System overview

The GlycanAssure™ System is an integrated glycan analysis platform with three components:

1. **GlycanAssure™ Kits**—Provide reagents for sample preparation (to release, purify, and label glycans) and for capillary electrophoresis.

2. **Applied Biosystems™ 3500/3500xL Genetic Analyzer for Protein Quality Analysis** (POP-7™ polymer, 50-cm capillary array) (described in Pub. No. 100036372)—Runs GlycanAssure™ Data Acquisition Software to collect data for samples prepared with the GlycanAssure™ Kits.

3. **GlycanAssure™ Data Analysis Software** (described in Pub. No. 100036373)—Processes and analyzes glycan data and includes data trending and profile matching features.
Workflow

1 Dashboard
Create a project

2 Processing
Import samples

Assign analysis method

Review the Sizing Quality (SQ) and sample quality flags
(Optional) Create or modify analysis method

Analysis Method

- Analysis Method Name: Test
- Description:
- Add to Favorites
- Set as Default

Baseline Alignment Peak Integration Peak Calling & Quality

Smoothing and Baseline

- Analysis Range: Full Range
- Start Point: 0
- Stop Point: 10000

Analyze samples
3 Analysis
Review analysis results
(Optional) Adjust peak delimiters, baseline, and bins

Review data trending

4 Report
Review reports

Project Details

- **Project Name:** Demo-2
- **User Name:** gm
- **Creation Date:** 08-12-2016
- **Modification Date:** 13-12-2016
- **Comments:**

Processing Table

<table>
<thead>
<tr>
<th>Sample ID</th>
<th>Sample Name</th>
<th>Sample Type</th>
<th>Analysis Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>64</td>
<td>APTS IgG1</td>
<td>Unknown</td>
<td>AM-2</td>
</tr>
<tr>
<td>63</td>
<td>APTS IgG2</td>
<td>Unknown</td>
<td>AM-2</td>
</tr>
</tbody>
</table>
Set preferences

1. In the top right of the toolbar, click ✚.

2. Specify settings as needed, then click Apply.

<table>
<thead>
<tr>
<th>Preference</th>
<th>Setting</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dashboard</td>
<td>Show number of projects</td>
<td>Number of projects per page</td>
</tr>
<tr>
<td></td>
<td>Refresh Run Count</td>
<td>For Autoanalysis. Not available in this release.</td>
</tr>
<tr>
<td></td>
<td>Define Run Paths</td>
<td>For Autoanalysis. Not available in this release.</td>
</tr>
<tr>
<td>Processing</td>
<td>Save project</td>
<td>Sets automatic saving and interval.</td>
</tr>
<tr>
<td></td>
<td>Show Analysis Methods</td>
<td>Determines the projects listed: All, Favorite, or Default.</td>
</tr>
<tr>
<td></td>
<td>Show quality alerts</td>
<td>Determines whether flags are shown as colored indicators or numbers.</td>
</tr>
<tr>
<td>Analysis</td>
<td>Show quality alerts</td>
<td>Determines whether flags are shown as colored indicators or numbers.</td>
</tr>
<tr>
<td></td>
<td>Data trending default</td>
<td>Determines if the trending default is Area, Relative Area, Height, Relative Height, or Retention Time.</td>
</tr>
<tr>
<td>Reports</td>
<td>Logo</td>
<td>Image (.jpg) to include in the report header.</td>
</tr>
<tr>
<td></td>
<td>Header and footer text</td>
<td>Text to include in the report header and footer.</td>
</tr>
<tr>
<td>Date format</td>
<td>Region</td>
<td>US or UK (selection determines options displayed in Format list)</td>
</tr>
<tr>
<td></td>
<td>Format</td>
<td>Date format</td>
</tr>
</tbody>
</table>
Work with projects

- Create, open, or save a project .. 12
- Search for a project .. 12
- Import samples ... 13
- Analyze samples .. 13
- View a report .. 13
- Analysis status ... 14
- Processing flags ... 14

Create, open, or save a project

In the Dashboard tab:
- **Create** – Click Create New Project
- **Open** – Double-click a project
- **Save** – Click

In the Manage tab:
- **Open** – Double-click a project
- **Save As** – Click

Search for a project

You can do any of the following to search for projects:
- In the Dashboard, select a search criterion.
• In the Dashboard, click Advanced Search, select a search criterion, then set search parameters.

• In the Manage tab, select a criterion (name, date created or modified, user name), then click Q.

Import samples

1. In the Processing tab, click Import Samples.

2. Select the files or samples, then click Import to Project.

Analyze samples

In the Processing tab:

1. Select one or more samples.

2. Assign an analysis method (see “View, assign, or remove an analysis method” on page 15).

3. Click Analyze.

View a report

View a report from the Report tab by clicking Create.
Chapter 2 Work with projects

Analysis status

<table>
<thead>
<tr>
<th>Icon</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Not analyzed</td>
</tr>
</tbody>
</table>
| ![Alert](image) | • Analysis method was edited, removed from a sample, or deleted from the software (Manage>Analysis Method)
• Size standard definition was edited or deleted from the software (Manage>Size Standard)
• Samples are deleted from the project
• Sample .fsa files are moved from their original location during analysis (using Windows™ File Explorer) |

Processing flags

Table 1 Processing flags

<table>
<thead>
<tr>
<th>Flag</th>
<th>Description</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>SFNF</td>
<td>Sample File Not Found</td>
<td> </td>
</tr>
<tr>
<td>STDNF</td>
<td>Size Standard Not Found</td>
<td> </td>
</tr>
<tr>
<td>SQ</td>
<td>Sizing Quality</td>
<td> </td>
</tr>
<tr>
<td>OS</td>
<td>Off Scale</td>
<td> </td>
</tr>
<tr>
<td>SQI</td>
<td>Sizing Quality Invalid</td>
<td></td>
</tr>
<tr>
<td>LMNF</td>
<td>Landmark Not Found</td>
<td> <img src="image" alt="Number of landmark dye peaks detected is < the number of peaks required by the software" /> </td>
</tr>
</tbody>
</table>
Work with analysis methods

- View, assign, or remove an analysis method ... 15
- Filter analysis methods ... 15
- Analysis method parameters ... 16

View, assign, or remove an analysis method

In the Processing tab:
- To view an analysis method, click an analysis method name in the left pane.
- To assign an analysis method, you can:
 - Select individual samples, then click Assign next to the method to assign
 - Select Select All Samples from the drop-down list above the Processing table, then select the method to assign

Note: Only one analysis method is allowed in a project to allow the same bins to be used by all samples in the project.
- To remove an analysis method, you can:
 - Click Remove All Analysis Methods to remove the analysis method from all samples
 - Click x next to the method to remove
 - Right-click a row in the table, select Remove Analysis Method, then select the method to assign

After adding or removing an analysis method, click Analyze to apply the changes. Samples that do not have an analysis method assigned are not analyzed.

Filter analysis methods

- In the Processing tab, click ▼▼▼, then select All, Favorite, or Default analysis methods.
- Set the Processing tab preference to display All, Favorite, or Default analysis methods. You can override the preference setting by clicking ▼▼▼.
Analysis method parameters

Use the default settings as a starting point and adjust for your data as needed.

Table 2 Analysis method parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>General</td>
<td></td>
</tr>
<tr>
<td>Analysis Method Name</td>
<td>Unique name and optional description.</td>
</tr>
<tr>
<td>Description</td>
<td></td>
</tr>
<tr>
<td>Add to Favorites</td>
<td>Click to tag as a favorite. You can set preferences to show only favorite analysis methods in the Analysis tab.</td>
</tr>
<tr>
<td>Set as default</td>
<td>Select the checkbox to specify as the default method. You can set preferences to show only the default analysis methods in the Analysis tab. You cannot delete or modify a method specified as the default method.</td>
</tr>
<tr>
<td>Baseline tab</td>
<td></td>
</tr>
<tr>
<td>Analysis Range</td>
<td>Specify the range [in data points] to analyze:</td>
</tr>
<tr>
<td></td>
<td>• Full Range to analyze the entire scan region as collected by the capillary electrophoresis instrument, including the Landmark Red peak.</td>
</tr>
<tr>
<td></td>
<td>• Partial Range to analyze only data points within a specified range. Enter Start Point in data points after the primer peak and before the first required size standard peak. Enter a Stop Point after the last required size standard fragment. Start and Stop points may vary from instrument to instrument and platform to platform. Display raw data to determine the appropriate analysis range.</td>
</tr>
<tr>
<td></td>
<td>Data points outside the specified range are ignored.</td>
</tr>
<tr>
<td></td>
<td>Ensure the Analysis Range contains all size standard peaks.</td>
</tr>
<tr>
<td>Smoothing</td>
<td>Select a smoothing level (0 to 8) to smooth the outline of peaks and reduce the number of false peaks detected:</td>
</tr>
<tr>
<td></td>
<td>• Use 0 if the data display sharp, narrow peaks of interest.</td>
</tr>
<tr>
<td></td>
<td>• Use a low number to provide the best results for typical data. Light smoothing slightly reduces peak height.</td>
</tr>
<tr>
<td></td>
<td>• Use a high number for data with broad peaks of interest. Heavy smoothings can significantly reduce peak height.</td>
</tr>
<tr>
<td>Baseline Window</td>
<td>Specify a window to adjust the baseline signals of all detected dye colors to the same level for an improved comparison of relative signal intensity. Note the following:</td>
</tr>
<tr>
<td></td>
<td>• A small baseline window relative to the width of a cluster, or grouping of peaks spatially close to each other, can result in shorter peak heights.</td>
</tr>
<tr>
<td></td>
<td>• Larger baseline windows relative to the peaks being detected can create an elevated baseline, resulting in peaks that are elevated or not resolved to the baseline.</td>
</tr>
<tr>
<td>Parameter</td>
<td>Description</td>
</tr>
<tr>
<td>------------</td>
<td>---</td>
</tr>
<tr>
<td>Baseline tab</td>
<td>Normalization</td>
</tr>
<tr>
<td></td>
<td>• Size standard (described below)</td>
</tr>
<tr>
<td></td>
<td>• Average signal of the data in a sample file</td>
</tr>
<tr>
<td></td>
<td>• Maximum signal of the data in a sample file</td>
</tr>
<tr>
<td></td>
<td>Size standard normalization</td>
</tr>
<tr>
<td></td>
<td>The Data Acquisition Software provides a normalization option that is enabled through the size standard selection.</td>
</tr>
<tr>
<td></td>
<td>It uses the GeneScan™ 600 LIZ™ Size Standard to obtain consistent lot-to-lot peak heights. It provides more consistent results between data from different instruments, injections, and capillaries.</td>
</tr>
<tr>
<td></td>
<td>The software calculates a normalization factor based on a threshold setting. For each injection, the normalization factor is used as a multiplier to adjust the peak height of the sample peaks relative to the GS600 LIZ™ size standard peaks. There are minimum and maximum limits to the normalization factor, so if the size standard peak heights are abnormally high or low, the normalization will be limited.</td>
</tr>
<tr>
<td></td>
<td>The normalization factor is saved in the sample data file. When you import a normalized data file into a project, you can remove and apply the normalization factor by deselecting and selecting the Enable Size Standard Normalization check box.</td>
</tr>
<tr>
<td>Alignment tab</td>
<td>Size Calling Method</td>
</tr>
<tr>
<td></td>
<td>Select the method to determine the molecular length of unknown fragments.</td>
</tr>
<tr>
<td></td>
<td>• Second Order Least Squares - Uses regression analysis to build a best-fit size calling curve.</td>
</tr>
<tr>
<td></td>
<td>• Cubic Spline Interpolation - Forces the sizing curve through all the known points of the selected size standard.</td>
</tr>
<tr>
<td></td>
<td>• Global Southern Method - Compensates for standard fragments with anomalous electrophoretic mobility (similar to least squares methods).</td>
</tr>
<tr>
<td></td>
<td>• Third Order Least Squares - Uses regression analysis to build a best-fit size calling curve.</td>
</tr>
<tr>
<td></td>
<td>• Local Southern - (default) Determines the fragment sizes using the reciprocal relationship between fragment length and electrophoretic mobility.</td>
</tr>
<tr>
<td></td>
<td>Size Standard</td>
</tr>
<tr>
<td></td>
<td>Select a the size standard definition for the size standard used for the samples.</td>
</tr>
</tbody>
</table>
Analysis Method Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
</table>
| **Alignment tab** | **Auto Alignment**
Select the checkbox to enable automated alignment of the sample peaks with reference peaks.
The following peak properties for each reference standard determine the automated alignment of sample peaks with the reference peaks:
• Peak positions
• Offset for each peak
• Order of polynomial regression
• Dye color
Note: Auto alignment is disabled by default. Select the checkbox to enable auto alignment. |
| **Peak Integration tab** | **Peak Start and Stop**
• **Peak Start** - The peak starts when the first derivative (slope of the tangent) in the beginning of the peak signal before the inflection point becomes equal to or exceeds the Peak Start value. This threshold is set to 0 by default, which means that the peak will normally start at the leftmost point where the slope of the tangent is closest to 0° (horizontal line). A value other than 0 moves the peak start point toward its center. The value entered must be non-negative.
• **Peak Stop** - The peak ends when the first derivative (slope of the tangent) in the end of the peak signal after the inflection point becomes equal to or exceeds the Peak End value. This value is set to 0 by default, which means that the peak will normally end at the rightmost point where the slope of the tangent is closest to 0° (horizontal line). A value other than 0 moves the peak end point toward its center. The value entered in this field must be non-positive. |
| **Minimum Peak Half Width** | Specify the smallest half peak width at full height for peak detection. The range is 2 to 99 data points. |
| **Polynomial Degree** | **Polynomial Degree** cannot be greater than **Peak Window Size**.
Adjust to affect the sensitivity of peak detection. You can adjust this parameter to detect a single RMU difference while minimizing the detection of shoulder effects and/or noise.
The peak detector calculates the first derivative of a polynomial curve fitted to the data within a window that is centered on each data point in the analysis range.
Using curves with larger polynomial degree values allows the curve to more closely approximate the signal and, therefore, captures more of the peak structure in the electropherogram.
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
</table>
| **Peak Integration tab** | **Peak Window Size** Enter a window width in data points for peak detection sensitivity. If more than one peak apex is within the window, all are labeled as a single peak. Note the following:
 - The maximum value is the number of data points between peaks.
 - The Peak Window Size setting is limited to odd numbers.
 To increase peak detection sensitivity: Increase Polynomial Degree, decrease Peak Window Size.
 To decrease peak detection sensitivity: Decrease Polynomial Degree, increase Peak Window Size. |
| **Absolute Height (Peak Amplitude Threshold)** | Specify the threshold (RMU) for peak detection for each dye color. Peaks ≥ the threshold are detected.
 For example, if you use the default values of 50, peaks with heights equal to or greater than 50 are detected. Peaks with heights below 50 are still displayed in the electropherogram plots but are not detected or labeled. |
| **Peak Calling and Quality tab** | **Peak Window (for BD flag)** Max Peak Width Threshold to identify broad peaks (BD).
 Max. Peak Width
 Pull-up Peak (for SPU flag) The pull-up ratio or scan for a peak to be called a pull-up peak. Pull-up occurs when the peak height of the called peak is less than X % of the larger peak that is within ±1 data point.
 Sizing Quality Range (SQ) Pass, Check, and Fail ranges for SQ flag. |
Analyze and review results

- Analyze samples ... 20
- Align peaks automatically ... 20
- (Optional) Align peaks manually 21
- Create and manage bins ... 23
- Examine results .. 26
- Specify peak labels ... 37
- Print, export, or save (.pdf, .png) results 38

Analyze samples

In the Processing tab:

1. Select one or more samples.

2. Assign an analysis method (see “View, assign, or remove an analysis method” on page 15).

3. Click Analyze.

Align peaks automatically

When auto alignment is enabled, the software automatically determines the alignment of sample peaks with the reference peaks.

Enable auto alignment in the analysis method assigned to your samples:

1. In the Processing tab, click the analysis method name in the left pane.

2. Click the Alignment tab.

3. Select the Auto Alignment checkbox, then click Save.

4. Click Analyze.

The software calculates the new RMU based on the number of peaks specified and detected.

Note: The software does not change the peak area or height attributes after alignment.
If you are not satisfied with the results of the auto alignment, you can perform manual alignment (see page 21).

Optional Align peaks manually

If the RMU for a given peak varies between samples, the peak may be assigned to an incorrect bin. To align the peaks across samples, you can select one or more peaks manually.

In the **Analysis** tab:

1. Click the **Alignment** tab.

2. If individual traces are displayed, click to overlay traces.

3. Zoom-in on the peaks you want to align.

4. Set the window width so that the window edges encompass all of the peaks you want to align.

5. When the window is properly positioned, click the trace to select all peaks within the window edges.
 The selected peaks are assigned the same color.
6. Align peaks in a different region of the trace by repeating step 3 through step 5.

7. Click to display individual traces, then scroll through each individual trace to confirm that the peaks are correctly selected.

8. If a peak is unassigned or assigned incorrectly:
 a. If needed, click the peak to remove the incorrect color assignment.
b. Right-click the peak to select a color from currently assigned colors, or click the peak to assign a new color.

9. Click **Apply**, then click **Yes** to confirm.

Note: The software does not change the peak area or height attributes after alignment.

Click **Reset** to remove the offsets and alignment. Click **Cancel** to remove the selection.

Create and manage bins

Create new bins manually

In the **Analysis** tab:

1. Select **RMU**, select **Create Bin**, then select the bin width.
2. Click a location in the plot to add a bin. Bins are displayed as blue bars in the electropherogram plot. Bin values are listed in the left pane.

3. Click **Apply** to save the result and add the bin to the **Samples List** and **Summary** table.

Create new bins with autobinning

The autobinning function creates bins based on:

- The peaks that are detected with the settings in the analysis method
- The bin width that you specify

In the Analysis tab:

1. Click **Auto** in the left pane.

2. Select the sample, range, and bin width to use to create bins, then click **Autobin**. The bins are displayed in the trace.

3. *(Optional)* If expected bins are not created for small peaks, click **Assign Empty Bins**, specify a peak amplitude threshold to detect smaller peaks, then click **Apply Second Pass**. The peaks are displayed in the trace with "P2" to indicate the peak amplitude threshold from the analysis method has been overridden.

Note: To remove P2 peak labels, click **Assign Empty Bins**, then click **Remove Second Pass**.
In the **Analysis** tab:

- To apply a previously saved panel of bins, click **Panel**, select a panel, then click **Import**.
- To save a panel of bins for future use, click **Add to Library**.
- To shift a panel of bins left or right, change the values for one or more bins, or use the arrows to shift the panel (−10 through +10), then click **Apply**.

![Example of applying a panel of bins](image)

Note: Use the shift feature if the applied panel of bins is not properly assigned to the aligned peaks.

In the **Analysis** tab:

- To display bins in the plot, select **RMU**, select **Edit/Create Bin**.
- To display bin names on the peaks, click **Peak Label**, then select **Bin Name**.

![Example of displaying bin information](image)
In the Analysis tab:

- To edit a bin, double-click a bin name, center, or width value in the left pane, change the value, then press **Enter**.
- To unassign a bin, right-click a peak in the plot, then select **Unassign bin** or **Unassign all bins**.
- To delete a bin, click a bin name in the left pane, right-click, then select **Delete**.

A (P2) peak label is automatically assigned to peaks that are detected with a Peak Amplitude Threshold lower than the threshold in the analysis method (assigned during autobinning). For more information, see “Create new bins with autobinning” on page 24).

Click **Assign Empty Bins** in the left pane, then click **Remove Second Pass**.

Examine results

View results tables

1. Examine the **Samples list** tab for quality and bin information.

<table>
<thead>
<tr>
<th>Sample Name</th>
<th>B100.9</th>
<th>B103.86</th>
<th>B120.84</th>
</tr>
</thead>
<tbody>
<tr>
<td>APTS IgG1</td>
<td>297.00</td>
<td>53.00</td>
<td>86.00</td>
</tr>
<tr>
<td>APTS IgG2</td>
<td>299.00</td>
<td>53.00</td>
<td>53.00</td>
</tr>
<tr>
<td>APTS IgG3</td>
<td>302.00</td>
<td>40.00 (P2)</td>
<td>82.00</td>
</tr>
</tbody>
</table>

2. Examine the **Summary** tab for bin information on assigned peaks.

<table>
<thead>
<tr>
<th>Attribute</th>
<th>B100.9</th>
<th>B103.86</th>
<th>B120.84</th>
<th>B124.58</th>
</tr>
</thead>
<tbody>
<tr>
<td>APTS IgG1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Actual Area</td>
<td>3837.00</td>
<td>524.00</td>
<td>1122.00</td>
<td>1295.00</td>
</tr>
<tr>
<td>Actual Relat...</td>
<td>0.44%</td>
<td>0.06%</td>
<td>0.13%</td>
<td>0.14%</td>
</tr>
<tr>
<td>Actual Height</td>
<td>297.00</td>
<td>52.00</td>
<td>0.00</td>
<td>101.00</td>
</tr>
</tbody>
</table>
3. Examine the **All Peaks** tab for area, height, RMU, retention time, and datapoints on assigned and unassigned peaks.

4. Examine the **Peaks list** tab for a list of peaks that meet the **Peak Amplitude Threshold** in the analysis method and the **RMU** value for each peak.

Note: For information on the **Alignment** tab, see “Align peaks automatically” on page 20 and “(Optional) Align peaks manually” on page 21.

View electropherogram plots

To display electropherogram plots for an analyzed project, click the **Analysis** tab. Do the following as needed.

- Assign bins (see “Create and manage bins” on page 23).
- View traces. The following plot settings are automatically applied: Blue dye, RMU, Autoscale on (adjusts the Y-Axis to the highest peak in zoomed area), Offscale off, Bin Name on, and Edited Peak indicator on.
 - Peaks that have had peak start, peak end, or baseline modified are flagged with 🌟.
 - Peaks that are detected with a Peak Amplitude Threshold lower than the threshold in the analysis method (assigned during autobinning) are flagged with (P2). For more information, see “Create new bins with autobinning” on page 24).
- Check for expected peaks by scrolling through all traces using the scroll bar on the far right of the pane, or clicking 📁.
- View peaks assigned to bins and peaks not assigned to bins.
- Right-click a peak, then:
 - Assign a peak to a bin or remove a peak from a bin (unassign).
 - Lock the peak to prevent adjustment of peak start/end or baseline.
- Remove bins from analysis by right-clicking in the left pane, then selecting **Delete**.
- Search for peaks with specific attributes, for example, peaks with an area below a minimum setting you specify (“Search for peak calls (results)” on page 30).
• Zoom (see “Zoom and unzoom” on page 28).
• Show offscale data by clicking \(\text{Offscale} \), then selecting Offscale. Offscale peaks are flagged with pink bars.
• Adjust peak detection (“Adjust delimiters (peak start/end) and baseline” on page 29).
• Create sample groups for analysis and trending (“Create sample groups” on page 33).
• Change peak label settings (“Set the peak label to display” on page 37).

Zoom and unzoom

To zoom and unzoom on the x axis:
• **Zoom** –
 - Click \(\text{or} \)
 - Place the pointer above the plot until it turns into \(\), then click-drag a box around the area or
 - Place the pointer above the plot until it turns into \(\), right-click, select **Zoom To**, then enter the x-axis unit to zoom to
• **Unzoom** –
 - Click \(\text{or} \) or \(\text{or} \)
 - Place the pointer above the plot until it turns into \(\), right-click, then select **Full View** or
 - Place the pointer above the plot until it turns into \(\), move it close to the top axis of the plot, then double-click

Note: If you move \(\) too far away from the top axis of the plot, double-clicking does not unzoom.

To zoom and unzoom on the y axis:
• **Zoom** –
 - Place the pointer to the left of the plot until it turns into \(\), then click-drag a box around the area or
 - Place the pointer to the left of the plot until it turns into \(\), right-click, select **Zoom To**, then enter the y-axis unit to zoom to
• **Unzoom** –
 - Place the pointer to the left of the plot until it turns into \(\), then double-click or
 - Place the pointer to the left the plot until it turns into \(\), right-click, then select **Full View**
Adjust delimiters (peak start/end) and baseline

Before adjusting delimiters, assign bins (see “Create and manage bins” on page 23). Locked peaks can not be edited. Right-click a peak, then select Unlock.

In the Analysis tab:

1. Select Datapoints from the plot toolbar.

2. Select Edit Delimiters or Edit Baseline.

3. Click , then select Delimiters or Baseline.

4. Zoom on the x axis and y axis of an assigned peak until you can see peak start and end tick marks.
 - To zoom, move the cursor to the left of or above an axis until it changes to , then drag around the area to zoom.
5. Click a start or end tick mark or the baseline. When the cursor changes to
\(\text{\textbullet}\), click-drag the tick mark or baseline to a new location.

Note: If you are editing the baseline and the cursor does not change to
\(\text{\textbullet}\), zoom in on the y axis. You may need to zoom to <500 RFU.

6. Click \(\text{\textbullet}\) to save the settings for the sample.

7. (Optional) Click \(\text{\textbullet}\), then select Edited Peak to flag the peaks \(\text{\textbullet}\) with adjusted delimiters or baseline.

Search for peak calls (results)

You can specify new search parameters, or click Open Recent Searches to use previous search parameters.

In the Analysis tab:

1. Select the attribute to search for: Relative Area, Relative Height, Area, or Height.

2. Select the property to search for: Actual, Average, %CV, SD.

3. Specify search by value or range.

4. Specify the value (and conditions) or range to search.

5. Click Search.
Display sample info, raw data, or EPT data

1. In the Processing tab, double-click the Raw Data field for a sample.

<table>
<thead>
<tr>
<th>Sample Name</th>
<th>Sample Type</th>
<th>Raw Data</th>
<th>Sample ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>APTS IgG1</td>
<td>Unknown</td>
<td></td>
<td>54</td>
</tr>
<tr>
<td>APTS IgG2</td>
<td>Unknown</td>
<td></td>
<td>63</td>
</tr>
<tr>
<td>APTS IgG3</td>
<td>Unknown</td>
<td></td>
<td>62</td>
</tr>
</tbody>
</table>

If the Raw Data column is not displayed, see “Create or apply table settings“ on page 42.

2. Click the tab for the data of interest.

Compare processing

1. In the Processing tab, select a sample.

2. Assign two analysis methods to the sample by clicking the Assign button next to a method at the left of the screen.
3. Click **Compare Processing**.

![Image of Compare Processing window]

4. As needed:
 - Review the traces
 - Click **Show Differences table**
 - Select the second analysis method
 - Click **Apply to All Samples**

View data trending

Before viewing data trending, assign bins (see “Create new bins manually” on page 23 or “Create new bins with autobinning” on page 24).

In the **Analysis** tab:

1. Click **Data Trending** at the right of the screen to expand the pane. Each bar in the chart represents a bin.

![Image of Data Trending chart]

2. As needed in the bar chart:
 - Click a bar to zoom on the selected bin. Click any bar to return to full view.
 - Drag the scroll bar below the bar chart to view additional bins.
 - Place the cursor on a bar for a tooltip that contains more information.
Create sample groups

You can create sample groups in the Analysis tab to allow easy review of subsets of samples in the project.

1. Select the samples of interest in the samples list.

2. Right-click, then select Create Sample Group.

Override Sizing Quality (SQ)

You can fix failed size standards in the Size Match Editor and reanalyze the samples that failed sizing.

1. In the Processing tab, select a sample with a failed SQ.

2. Click \(\text{SQ Editor} \).

3. Adjust size standard peaks as needed, then click Override SQ.

 After overriding the SQ values:
 - The SQ flags are changed to \(\text{SQ} \).
 - Analysis status changes from \(\text{SQ} \) to \(\text{SQ} \).
 - A \(\text{SQ} \) appears in the SQI (Size Quality Invalid) Samples table column (if displayed).

4. In the Processing tab, click Analyze.
Analysis flags

Table 3 Analysis flags

<table>
<thead>
<tr>
<th>Flag</th>
<th>Description</th>
<th>Status</th>
<th>Analysis method setting for threshold or range</th>
<th>Analysis Peak Calling & Quality</th>
</tr>
</thead>
<tbody>
<tr>
<td>SQ</td>
<td>Sizing Quality</td>
<td>▶ SQ value is in the Pass range</td>
<td>SQ Range</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>▶ SQ value is between the Pass range and the Low Quality range</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>▶ SQ value is In the Fail range</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BD</td>
<td>Broad Peak</td>
<td>▶ No peaks exceed the Max Peak Width threshold.</td>
<td>Max Peak Width</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>▶ One or more peaks exceed the Max Peak Width threshold.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EB</td>
<td>Empty Bin</td>
<td>▶ Peaks are assigned to all the bins specified in the analysis method</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>▶ One or more bins does not have a peak assigned to it</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIN</td>
<td>Out of Bin</td>
<td>▶ All detected peaks are assigned to bins and are identified</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>▶ One or more detected peaks are unassigned and are un-identified</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OS</td>
<td>Off Scale</td>
<td>▶ No fluorescence signals within the analysis range exceed the signal threshold of the instrument</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>▶ One or more fluorescence signals within the analysis range exceed the signal threshold of the instrument</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SQI</td>
<td>Sizing Quality Invalid</td>
<td>▶ Override SQ applied</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>SPU</td>
<td>Spectral Pull Up</td>
<td>▶ No pull-up peaks are detected in the sample signal</td>
<td>Pull up ratio</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>▶ One or more pull-up peaks are detected in the sample signal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OMIT</td>
<td>Sample manually omitted from analysis</td>
<td>▶ Sample is omitted from results calculation by the user Displays sample file name of omitted sample</td>
<td>N/A</td>
<td></td>
</tr>
</tbody>
</table>
Plot toolbar

<table>
<thead>
<tr>
<th>List, button, or icon</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plot units list</td>
<td>Select Datapoints, RMU, or Migration Time.</td>
</tr>
<tr>
<td>Select/Edit list</td>
<td>Select Peak Selection, Edit Delimiters (peak start/end), or Edit Baseline.</td>
</tr>
<tr>
<td>Bin width selector</td>
<td>Bin width selector. Active only when RMU and Create/Edit Bin are selected.</td>
</tr>
<tr>
<td>Peak display list</td>
<td>Select All Peaks, Assigned Peaks (peaks that are assigned to bins), and Unassigned Peaks (peaks that are not assigned to bins).</td>
</tr>
</tbody>
</table>
| Select a peak attribute: | - **Offscale** pink marker
 - **Edited Peak** ⭐ marker
 - **Delimiter** peak start/end or **Baseline** |
| Select a peak label: | - **None**
 - **Bin Name**
 - **Area** or **Relative Area** (Actual area of peak)/(sum of area of all identified peaks in respective sample) \(\times 100 \)
 - **Height** or **Relative Height** (actual peak height/sum of height for all identified peaks in trace) \(\times 100 \)
 - **RMU value**
 - **Peak Tick** (displays # above all peaks that exceed the Peak Amplitude Threshold in the analysis method) |
<p>| Autoscale | Autoscale to the tallest peak in the zoomed area. |
| Unzoom and autoscale | Unzoom and autoscale to the the tallest peak in the trace. |
| Unzoom and fit plot | Unzoom and fit plot to window. |
| Zoom in out | Zoom in and out. You can also click-drag on the plot to zoom. |
| Save plot settings | Save plot settings. |</p>
<table>
<thead>
<tr>
<th>List, button, or icon</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Save the plot as PNG or PDF.</td>
</tr>
<tr>
<td></td>
<td>Print plots.</td>
</tr>
<tr>
<td></td>
<td>Overlay or separate electropherograms.</td>
</tr>
<tr>
<td></td>
<td>Dye colors to display in the plot.</td>
</tr>
<tr>
<td></td>
<td>Move the zoomed area to the previous or next bin.</td>
</tr>
</tbody>
</table>

Examine the size standard plot and curve

To investigate SQ flags:

1. In the **Processing** tab, select the samples of interest.
2. Click **SQ Editor** to view the size standard and peak assignments.
3. Ensure that all size standard peaks are present and labeled correctly. If all peaks are not present, make sure the analysis range in the analysis method is set correctly.
4. If the peak assignments are correct, you can override the size quality value.
5. Select the **Size Calling Curve** tab to view the size standard curve for the selected sample.
 Red data points represent the fragments from the size standard against a black best-fit curve.
6. Click **Apply**, then **OK**.
Specify peak labels

Set the peak label to display

Before selecting a peak label, assign bins (see “Create and manage bins” on page 23). In the Analysis tab:

1. Click , then select Peak Label.

2. Select the peak label to display.
 - For all labels except Bin Name, RMU Value, and Peak Tick, labels are displayed for individual peaks.
 - For Bin Name, labels are displayed only for peaks that are within bins.
 - For RMU Value, labels are displayed only for peaks that are detected with all settings specified in the analysis method.
 - For Peak Tick, "#" is displayed for peaks that are above the Peak Amplitude Threshold specified in the analysis method or specified during autobinning, regardless of the RMU range.

Note: A (P2) peak label is automatically assigned to peaks that are detected with a Peak Amplitude Threshold lower than the threshold in the analysis method (assigned during autobinning). For more information, see “Create new bins with autobinning” on page 24).

Remove P2 peak labels

A (P2) peak label is automatically assigned to peaks that are detected with a Peak Amplitude Threshold lower than the threshold in the analysis method (assigned during autobinning). For more information, see “Create new bins with autobinning” on page 24).

Click Assign Empty Bins in the left pane, then click Remove Second Pass.
Print, export, or save (.pdf, .png) results

- To print, export, or save results as .pdf – Click or in the table toolbar.
- To print or save plots as .pdf or .png – Click or in the plot toolbar.
- To print or save data trending results as .pdf or .png – Click or in the Data Trending screen.
Manage resources

- Manage projects .. 39
- Manage analysis methods ... 41
- Manage table settings ... 42
- Manage size standards .. 43
- Manage panels ... 43

Manage projects

Edit project name or description

1. In the Processing tab, click

2. Edit the name or description, then click Save.

Define sample path

When you add samples from sample files to a project:

- You specify the location of the sample files on the hard drive or a network drive.
- Sample files remain in their original location on the drive, and are not stored in the database.
- The software reads the information it needs from the sample files. No information is written back to the original sample files.

If the sample files are later moved from their original location, you must define a new sample file path in the project if you want to view raw data, view EPT data, or reanalyze samples.

1. In the Processing tab, select the samples for which you want to define a path.
 The SFNF (Sample File Not Found) column is if the software cannot find a sample file.

2. Click Define sample path.

3. Navigate to the original folder from which the sample was added to the project.
 The individual sample files are not listed if you open the folder containing the sample files. Select the folder, then click Define.
 The SFNF (Sample File Not Found) column is if the software successfully locates the sample file.

Set a project as a favorite

In the Dashboard or Processing tab, click ✓. You can search for favorites as described in “Search for a project” on page 12.
Save a copy of a project

In the Manage tab:
1. Click Projects in the left pane.
2. Select a project, then click Save As.

Export a project

In the Manage tab:
1. Click Projects in the left pane.
2. Select a project, then click Export.
3. Specify a location and a name for the exported project.
 The name of the exported project will be assigned to the project if you import it back in to the software.
4. (Optional) Select:
 - Autoname to select a name and location for the export. Otherwise the project is exported to the default location specified in preferences.
 - Export reference data to include the analysis method and size standard in the exported project.
 - Overwrite existing files to specify that the project can overwrite and existing project in the specified location.
 - Export fsa files to include the sample files in the exported project.
5. Click Save.
 A .zip file is saved to the specified location.

Import a project

In the Manage tab:
1. Click Projects in the left pane.
2. Click Import.
3. (Optional) Select Reference data overwrite to import the analysis method and size standard definition from the project and overwrite existing items.
4. Select the project .zip to import.
 The project is imported and assigned the name of the original project with a suffix of "Imported". If specified in the export, the following are also imported:
 - Analysis methods
 - Sample .fsa files (saved to
 <InstalledLocation\AppliedBiosystems\GlycanAssureDataAnalysis\Imported Projects\>)
Delete a project

In the **Manage** tab:

1. Click **Projects** in the left pane.
2. Select a project, then click **Delete**.

The project is deleted. The analysis methods associated with the project are retained. The sample .fsa files are **not deleted** from the computer.

Manage analysis methods

Create an analysis method

1. In the **Processing** tab in the Analysis method list, click **+**.
2. Enter parameters (see “Analysis method parameters” on page 16).
3. As needed, select **Set as default** or **Add to Favorite**.
4. Click **Save**.

Open an analysis method

In the Processing tab, click an analysis method name in the analysis method list.

Save a copy of an analysis method

In the **Manage** tab:

1. Click **Analysis Methods** in the left pane.
2. Select an analysis method, then click **Save As**.

View or edit an analysis method

In the **Manage** tab:

1. Click **Analysis Methods** in the left pane.
2. Double-click an analysis method.
3. View or edit the analysis method. Click **Save** if you edit the analysis method.

The analysis status of any samples that use the edited analysis method is set to **.****

Export an analysis method

In the **Manage** tab:

1. Click **Analysis Methods** in the left pane.
2. Select an analysis method, then click **Export**.
3. Specify a location and a name for the exported analysis method.

The name of the exported analysis method will be assigned to the analysis method if you import it back in to the software.
4. Click **Export**.

 A .xml file is saved to the specified location.
In the Manage tab:

1. Click Analysis Method in the left pane.
2. Click Import.
3. Select the analysis method .xml to import, then click OK.

In the Manage tab:

1. Click Analysis Methods in the left pane.
2. Select an analysis method, then click Delete.
 The analysis method is deleted.
 The analysis status of any samples in an open project that use the deleted analysis method is set to.

Manage table settings

Create or apply table settings

1. Click .
2. Click Create New, enter a name, then click OK.
3. Select the columns to display.
4. Click OK.

Column names

Sample ID is an internal identifier applied by the software.

UD1 through UD 3 are user-defined columns that can contain information from the GlycanAssure™ Data Acquisition Software.

See “Processing flags” on page 14 and “Analysis flags” on page 34 for a description of flag columns.

Import, export, save a copy, or delete table settings

In the Manage tab:

1. Click Table Settings in the left pane.
2. Select a row in the table.
3. Click Import, Export, Save As, or Delete as needed.
Manage size standards

Create a size standard definition
1. In the **Processing** tab, open an analysis method, then click **Alignment**.
2. Click.
3. Enter a Name and optional Description.
4. Select a Size Standard Dye.
5. Enter Peak sizes (RMU).
6. Click **Save**.

Import, export, save a copy, or delete a size standard
In the **Manage** tab:
1. Click **Size Standards** in the left pane.
2. Select a row in the table.
3. Click **Import**, **Export**, **Save As**, or **Delete** as needed.
 The analysis status of any samples in an open project that use the deleted size standard is set to.

Manage panels

Create a panel
In the **Analysis** tab:
1. Assign bins (see “Create and manage bins” on page 23).
2. Click **Add to Library**.

Import, export, save a copy, or delete a panel
In the **Manage** tab:
1. Click **Panel** in the left pane.
2. Select a row in the table.
3. Click **Import**, **Export**, **Save As**, or **Delete** as needed.
Use security, audit, and e-signature (SAE) functions

The SAE functions are available if your system includes the GlycanAssure™ Security, Audit, and E-signature (SAE) Administrator Console (SAE Admin Console).

Administrators overview of SAE functions

The SAE Admin Console provides the following SAE functions for administrators.

Note: This section provides a brief overview of the functions that the SAE IT Administrator or SAE System Administrator can perform in the SAE Admin Console. For more information, see the GlycanAssure™ Security, Audit, and E-signature (SAE) Administrator Console v1.0 Help (Pub. No. MAN0016774) and GlycanAssure™ Security, Audit, and E-signature (SAE) Administrator Console v1.0 User Guide (Pub. No. MAN0016773).

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
<th>Administrator permissions in the SAE Admin Console</th>
</tr>
</thead>
</table>
| Security | Controls user access to the GlycanAssure™ Data Acquisition Software and GlycanAssure™ Data Analysis Software. A default System Administrator user account is provided at installation. | • Create additional user accounts for the Data Acquisition Software and Data Analysis Software.
• Set security policies: Password expiration, allowed login attempts, session lockout (the software remains idle for a specified period).
• Set password policies: Password length, required characters, and use of previous passwords |
Function Description

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
<th>Administrator permissions in the SAE Admin Console</th>
</tr>
</thead>
</table>
| Audit | Automatically tracks the following:
- **Data Acquisition Software**—Tracks changes made to objects and actions performed by users.
- **Data Analysis Software**—Tracks changes made to objects and actions performed by users.
- **SAE Admin Console**—Tracks changes made to the SAE settings. | View and generate audit logs. The logs contain detailed information about the audited events. |
| Electronic signature (e-signature) | Controls user requirements to e-sign (provide a user name and password) the following objects:
- **Data Acquisition Software**—Instrument methods
- **Data Analysis Software**—Projects and project reports |
- Grant e-signature authority to user accounts.
- Enable e-signatures for the following objects: Instrument methods, projects, and/or project reports, and configure the number of e-signatures required.
- Create e-signature reasons.
- View, generate, and export e-signature logs. The logs contain detailed information about the e-signature events. |

Users overview of SAE functions

The SAE Admin Console controls the following SAE functions for users in the GlycanAssure™ Data Analysis Software.

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
<th>User permissions in the Data Analysis Software</th>
</tr>
</thead>
<tbody>
<tr>
<td>Security</td>
<td>Controls user access to the GlycanAssure™ Data Analysis Software.</td>
<td></td>
</tr>
</tbody>
</table>
- Log in to and exit the software.
- View the user profile.
- Lock a session.
- Change expired passwords.
See "Security" on page 46. |
Function Description

Audit
Automatically tracks changes made to objects and actions performed by users.

View and export audit logs. The logs contain detailed information about the audited events. See “Audit” on page 49.

Electronic signature (e-signature)
Controls user requirements to e-sign (provide a user name and password) projects and project reports.

Once a project or project report has been completely e-signed, it cannot be modified or deleted. However, you can create additional project reports for a project, then modify the new report as needed.

- E-sign projects and project reports.
- View and export e-signature logs. The logs contain detailed information about the e-signature events. See “Electronic signature” on page 51.

Security

Log in
Enter your user name and password to access the software.

Your access to functions in the software is based on the permissions associated with your user account. Functions for which you do not have permissions are dimmed.

If your system is configured for password expiration, you will be periodically prompted to change your password. If your system is configured to monitor failed log in attempts, you will be locked out of the software if you incorrectly enter your user name or password more than a specified number of times.
Exit

1. Click the name of the logged in user in the far right of the menu bar.

<table>
<thead>
<tr>
<th>User Id: Administrator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name: Administrator Administrator</td>
</tr>
<tr>
<td>Role: System Administrator</td>
</tr>
<tr>
<td>Email:</td>
</tr>
</tbody>
</table>

- Profile
- Lock Session
- Exit Application

2. Click Exit Application.

View and change the user profile

1. Click the name of the logged in user in the far right of the menu bar.

<table>
<thead>
<tr>
<th>User Id: Administrator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name: Administrator Administrator</td>
</tr>
<tr>
<td>Role: System Administrator</td>
</tr>
<tr>
<td>Email:</td>
</tr>
</tbody>
</table>

- Profile
- Lock Session
- Exit Application

2. Click Profile.

3. Change the profile as needed, click Update, then close the Profile dialog box.

 Note: You cannot change the User Name, Role, Status, E-Signature Authority, or Pre-Expire.

 Profile

 - User Name: Administrator
 - Role: System Administrator
 - Status: Active
 - E-Signature Authority
 - Pre-Expire

 - Change Password
 - Update
 - Close
Lock a session

If you need to leave the software running while you are away, you can lock a session. The software continues to run the session, but other users will not be able to access the session.

1. Click the name of the logged in user in the far right of the menu bar.

2. Click Lock Session, then click Yes to confirm.

Change your password when it expires

When your password is about to expire, a message is displayed when you log in.

1. Click the name of the logged in user in the far right of the menu bar.

2. Click Profile.

3. Change your password:
 a. Click Change Password.
 b. Enter the old password.
c. Enter a new password, confirm the new password, then click OK.

Audit

View, generate, and print object audit logs

1. In the SAE tab, click Audit Log, then click the Objects tab.

2. Click Refresh to synchronize the SAE Admin Console with the Data Analysis Software.

3. (Optional) Click Filters, select or enter the filter criteria as needed, then click Apply Filter to display the filtered list.

<table>
<thead>
<tr>
<th>To filter by the...</th>
<th>Do this...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date range</td>
<td>In the From and To fields, click the (calendar), then select a date.</td>
</tr>
<tr>
<td>Record name</td>
<td>In the Record field, enter a record name. Partial entry is sufficient (for example, if you enter IgG, all record names that include IgG are displayed).</td>
</tr>
<tr>
<td>User name</td>
<td>In the Username field, enter a user name. Partial entry is sufficient (for example, if you enter Smith, all user names that contain Smith are displayed).</td>
</tr>
<tr>
<td>Object type</td>
<td>Select an object Type:</td>
</tr>
<tr>
<td></td>
<td>• Analysis Method</td>
</tr>
<tr>
<td></td>
<td>• Size Standard</td>
</tr>
<tr>
<td></td>
<td>• Project</td>
</tr>
<tr>
<td></td>
<td>• Panel</td>
</tr>
<tr>
<td>Actions performed</td>
<td>Select an Action:</td>
</tr>
<tr>
<td></td>
<td>Note: The list of actions varies, depending on the object type that you selected.</td>
</tr>
<tr>
<td></td>
<td>• Create</td>
</tr>
<tr>
<td></td>
<td>• Update</td>
</tr>
<tr>
<td></td>
<td>• Delete</td>
</tr>
</tbody>
</table>

Note: To remove the filters, click Reset Filter.

4. Generate or print the log:

<table>
<thead>
<tr>
<th>If you want to...</th>
<th>Then...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Generate summary information</td>
<td>Click Summary Report to generate and open a .pdf file.</td>
</tr>
<tr>
<td>Generate detailed information</td>
<td>Select the objects of interest in the list, then click Detailed Report to generate and open a .pdf file.</td>
</tr>
<tr>
<td>Print the log</td>
<td>Click Print.</td>
</tr>
</tbody>
</table>

View, generate, and print event audit logs

1. In the SAE tab, click Audit Log, then click the Events tab.

2. Click Refresh to synchronize the SAE Admin Console with the Data Analysis Software.
3. (Optional) Click Filters, select or enter the filter criteria as needed, then click Apply Filter to display the filtered list.

<table>
<thead>
<tr>
<th>To filter by the...</th>
<th>Do this...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date range</td>
<td>In the From and To fields, click the (\text{calendar}), then select a date</td>
</tr>
<tr>
<td>Record name</td>
<td>In the Record field, enter a record name. Partial entry is sufficient (for example, if you enter admin, all record names that include admin are displayed).</td>
</tr>
<tr>
<td>User name</td>
<td>In the Username field, enter a user name. Partial entry is sufficient (for example, if you enter Smith, all user names that contain Smith are displayed).</td>
</tr>
<tr>
<td>Event type</td>
<td>Select an Event Type:</td>
</tr>
<tr>
<td></td>
<td>• System</td>
</tr>
<tr>
<td></td>
<td>• Panel</td>
</tr>
<tr>
<td></td>
<td>• Size Standard</td>
</tr>
<tr>
<td></td>
<td>• User</td>
</tr>
<tr>
<td></td>
<td>• Project</td>
</tr>
<tr>
<td></td>
<td>• Analysis Method</td>
</tr>
<tr>
<td>Actions performed</td>
<td>Select an Action:</td>
</tr>
<tr>
<td>Note:</td>
<td>The list of actions varies, depending on the event type that you selected.</td>
</tr>
<tr>
<td></td>
<td>• Login</td>
</tr>
<tr>
<td></td>
<td>• Logout</td>
</tr>
<tr>
<td></td>
<td>• Login Failed</td>
</tr>
<tr>
<td></td>
<td>• Password Changed</td>
</tr>
<tr>
<td></td>
<td>• Manual Binning</td>
</tr>
<tr>
<td></td>
<td>• E-signature</td>
</tr>
<tr>
<td></td>
<td>• Apply Alignment</td>
</tr>
<tr>
<td></td>
<td>• Password Expired</td>
</tr>
<tr>
<td></td>
<td>• Create</td>
</tr>
<tr>
<td></td>
<td>• Apply Auto Binning</td>
</tr>
<tr>
<td></td>
<td>• Analyze Samples</td>
</tr>
<tr>
<td></td>
<td>• User Authentication</td>
</tr>
<tr>
<td></td>
<td>• License Set</td>
</tr>
<tr>
<td></td>
<td>• Update</td>
</tr>
<tr>
<td></td>
<td>• Session Timeout</td>
</tr>
</tbody>
</table>

Note: To remove the filters, click Reset Filter.

4. Generate or print the log:

<table>
<thead>
<tr>
<th>If you want to...</th>
<th>Then...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Generate summary information</td>
<td>Click Summary Report to generate and open a .pdf file.</td>
</tr>
<tr>
<td>Print the log</td>
<td>Click Print.</td>
</tr>
</tbody>
</table>
Electronic signature

Guidelines for multiple e-signatures

If an object requires two or more e-signatures:

- The signers are not required to sign at the same time.
- When the first signer signs, the icon next to the e-sign button changes to ☑, and the Signed Status in the Manage tab is set to Partially Signed.
- When all required signers sign, the icon next to the e-sign button changes to ☑, and the Signed Status in the Manage tab is set to Signed.

E-sign a project

If your system is configured for electronic signature, you can optionally e-sign projects.

1. In the Analysis tab, click e-sign.
2. Select a reason for the e-signature, enter your user name and password, then click Apply.

The icon next to the e-sign button changes to ☑, and the Signed Status in the Manage tab is set to Signed.

Note: If two or more e-signatures are required, see “Guidelines for multiple e-signatures” on page 51.

E-sign a project report

If your system is configured for electronic signature, you can optionally e-sign project reports for projects that are completely e-signed.

1. In the Report tab, select the Signed Report option.
2. Select the report components, then click Create.
3. Enter your user name and password, then click Apply.

When the project report is generated, a detailed list of the e-signatures is included at the bottom of the report.

View, generate, export, and print e-signature logs

E-signature logs contain e-signature records from the GlycanAssure™ Data Analysis Software.

The log information is automatically recorded by the software and cannot be modified.

1. In the SAE tab, click E-signature Log.
2. Click Refresh to synchronize the SAE Admin Console with the Data Analysis Software.
3. **(Optional)** Click **Filters**, select or enter the filter criteria as needed, then click **Apply Filter** to display the filtered list.

<table>
<thead>
<tr>
<th>To filter by the...</th>
<th>Do this...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date range</td>
<td>In the From and To fields, click the calendar, then select a date.</td>
</tr>
<tr>
<td>Reason for the e-signature</td>
<td>In the Reason field, enter a reason. Partial entry is sufficient (for example, if you enter review, all reasons that include review are displayed).</td>
</tr>
<tr>
<td>User name</td>
<td>In the Username field, enter a user name. Partial entry is sufficient (for example, if you enter Smith, all user names that contain Smith are displayed).</td>
</tr>
<tr>
<td>Object type</td>
<td>Select an Object Type:</td>
</tr>
<tr>
<td></td>
<td>• Project</td>
</tr>
<tr>
<td>Object name</td>
<td>In the Object Name field, enter an object name. Partial entry is sufficient (for example, if you enter Demo, all object names that contain Demo are displayed).</td>
</tr>
</tbody>
</table>

Note: To remove the filters, click **Reset Filter**.

4. Generate, export, or print the log:

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Generate summary information</td>
<td>Click Summary Report to generate and open a .pdf file.</td>
</tr>
<tr>
<td>Export the log</td>
<td>Click Export to export a .csv, .pdf, or .xls file to a location of your choosing.</td>
</tr>
<tr>
<td>Print the log</td>
<td>Click Print.</td>
</tr>
</tbody>
</table>
Troubleshooting

<table>
<thead>
<tr>
<th>Observation</th>
<th>Possible cause</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>"Some samples are not normalized. A normalization factor will not be applied to un-normalized samples" message.</td>
<td>One or more .fsa files was acquired with a size standard that does not specify normalization, but the analysis method has Enable Size Standard Normalization enabled in the analysis method (Processing>Alignment).</td>
<td>Only samples acquired with a size standard that specifies normalization will be normalized during processing.</td>
</tr>
<tr>
<td>"Assigning bin to peak failed" message.</td>
<td>Peak is already assigned to bin</td>
<td>No action.</td>
</tr>
<tr>
<td></td>
<td>Peak is not a detected peak (no start and end tick marks displayed).</td>
<td>Adjust peak detection if needed ("Adjust delimiters (peak start/end) and baseline" on page 29).</td>
</tr>
<tr>
<td>In the Processing tab, the Analyze button is dimmed.</td>
<td>Analysis method is not assigned to at least one sample.</td>
<td>Assign analysis method.</td>
</tr>
<tr>
<td>Peak is flagged with a star.</td>
<td>Peak delimiters (start, end) or baseline were manually adjusted.</td>
<td>No action.</td>
</tr>
<tr>
<td>Peak is flagged with a # (number sign or hash tag).</td>
<td>The Peak Tick label is selected (Peak Labels>Peak Tick) and displays # above all peaks that are above the peak amplitude threshold in the analysis method or the Peak Amplitude Threshold used for second pass autobinning.</td>
<td>No action.</td>
</tr>
<tr>
<td>Observation</td>
<td>Possible cause</td>
<td>Action</td>
</tr>
<tr>
<td>--</td>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>Peak is flagged with (P2).</td>
<td>The peak was detected during second pass autobinning.</td>
<td>No action.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peak is flagged with pink marker.</td>
<td>The peak is offscale, and the Offscale peak marker is selected in the plot.</td>
<td>No action.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>When adjusting the baseline, the cursor does not change to 🧲.</td>
<td>High magnification is required to adjust the baseline.</td>
<td>Zoom in on the y axis. You may need to zoom to <500 RFU.</td>
</tr>
<tr>
<td>![Image](Baseline Cursor.jpg)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Documentation and support

Related documents

The following related documents are available:

<table>
<thead>
<tr>
<th>Document</th>
<th>Publication Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>GlycanAssure™ Data Acquisition Software v2.0 Help</td>
<td>MAN0014719</td>
</tr>
<tr>
<td>3500/3500xL Genetic Analyzer with GlycanAssure™ Data Acquisition Software v2.0 User Guide</td>
<td>100036372</td>
</tr>
<tr>
<td>GlycanAssure™ Data Analysis Software v2.0 Help</td>
<td>MAN0014720</td>
</tr>
<tr>
<td>GlycanAssure™ Data Analysis Software v2.0 User Guide</td>
<td>100036373</td>
</tr>
<tr>
<td>GlycanAssure™ Security, Audit, and E-signature (SAE) Administrator Console v1.0 Help</td>
<td>MAN0016774</td>
</tr>
<tr>
<td>GlycanAssure™ Security, Audit, and E-signature (SAE) Administrator Console v1.0 User Guide</td>
<td>MAN0016773</td>
</tr>
<tr>
<td>GlycanAssure™ System Quick Reference</td>
<td>100038224</td>
</tr>
</tbody>
</table>

Note: For additional documentation, see “Customer and technical support” on page 55.

Customer and technical support

Visit thermofisher.com/support for the latest in services and support, including:

- Worldwide contact telephone numbers
- Product support, including:
 - Product FAQs
 - Software, patches, and updates
 - Training for many applications and instruments
- Order and web support
- Product documentation, including:
 - User guides, manuals, and protocols
 - Certificates of Analysis
 - Safety Data Sheets (SDSs; also known as MSDSs)

Note: For SDSs for reagents and chemicals from other manufacturers, contact the manufacturer.
Limited product warranty

Life Technologies Corporation and/or its affiliate(s) warrant their products as set forth in the Life Technologies' General Terms and Conditions of Sale found on Life Technologies' website at www.thermofisher.com/us/en/home/global/terms-and-conditions.html. If you have any questions, please contact Life Technologies at www.thermofisher.com/support.
Index

3500/3500xL Genetic Analyzer 6

A
analysis, preferences 11
analysis method
 create 41
 filter 15
 open 41
 parameters 16
 view, assign, or remove 15
analyze samples 13, 20
audit, administrators, overview 44
audit, users, overview 45
autobinning 24

B
baseline, adjust 29
BD 34
bin
 assign peak to 27
 autobinning 24
 create, autobinning 24
 create, manual 23
 delete 26
 display name in electropherogram 37
 edit 26
 panel 25
 unassign 26
BIN 34

C
compare processing 31

D
Dashboard, preferences 11
data, trending 32
Data Acquisition Software 6
Data Analysis Software 6
date format, preferences 11
delimiters (peak start/end), adjust 29
documentation, related 55

e-signature logs, view, export, print 51
EB 34
electronic signature, administrators, overview 44
electronic signature, users
guidelines 51
overview 45
signing 51
electropherogram plot
 peak label 37
 peaks with # 37
 peaks with P2 24
 peaks with pink marker 27
 peaks with star symbol 27
 save as .pdf or .png 38
 view 27
EPT, view 31
event audit logs, view, generate, print 49
exit 47
export results 38
flags
 analysis 34
 processing 14

G
GlycanAssure Kits 6
guidelines, electronic signature 51

kits. See GlycanAssure Kits

L
limited product warranty 56
LMNF 14
LMQ 14
lock peak 27
log out. See exit
login, software 46
Index

O
object audit logs, view, generate, print 49
OMIT 34
OS 14, 34
override SQ 33

P
P2 peak 24, 26, 37
panel
create 43
export 43
import 43
manage 43
panel of bins 25
password, change your own 48
pdf, save results 38
peak
assign to bin 27
baseline, adjust 29
integrate manually 29
lock 27
start and end, adjust 29
peak label
P2 24
P2, remove 26, 37
plot
peaks with star symbol 27
view 27
plot toolbar 35
png, save results 38
preferences 11
print, results 38
processing, preferences 11
project
change name or description 39
create, open, save 12
favorite 39
import samples 13
manage 39
preferences 11
signing 51
project report, signing 51

R
raw data, view 31
related documentation 55
Replace with index term 6
report, view 13
reports, preferences 11
results
bar chart 32
export 38
print 38
samples table 26

S
sample
analyze 13, 20
import into project 13
info from data acquisition 31
name, search for 13
sample group 33
sample path, define 39
search
peak calls 30
results 30
security, administrators, overview 44
security, users
log in 46
overview 45
password change 48
SFNF 14
signing, electronic signature 51
size standard
create definition 43
export 43
import 43
manage 43
plot and curve 36
sizing quality. See SQ
software 6
SPK 34
SPU 34
SQ, override 33
SQI 14, 34
star symbol in electropherogram plots 27
status, analysis 14
STDNF 14
support, customer and technical 55
system overview 6

T
table settings
apply 42
create 42
manage 42
set as default 42
terms and conditions 56
troubleshooting 53

U
user profile 47, 48
W
warranty 56
workflow 7

Z
zoom and unzoom 28