# A Multi-Site Study Comparing a Commercially Prepared Dried MIC Susceptibility System to the CLSI/ISO Broth Microdilution Method for Ceftibuten-Clavulanic Acid using Gram-Negative Non-Fastidious Organisms

\*T.C. Lewis¹, D.T. Staats¹, N. M. Holliday¹, C. C. Knapp¹, S.B. Killian¹, B.J. Olson², C.L. Pike², E.K. Donnerbauer², N.P. Mehta², T.R. Fritsche², A. Gattis³, N. Waugh³, K.Doing³, J.Vlooswijk⁴, A. Cornelisse⁴, E. Scopes⁵, J. Williams⁵, A-M. Leonte⁵, K. Krause⁶
¹Thermo Fisher Scientific, Cleveland, OH; ² Marshfield Clinic, Marshfield, WI; ³Centura Health, Colorado Springs, CO; ⁴University Medical Center Utrecht, Utrecht, Netherlands; ⁵Thermo Fisher Scientific, Basingstoke, UK; ⁶Achaogen, Inc. South San Francisco, CA

# **ABSTRACT**

**Background:** Ceftibuten-clavulanic acid (T/CA) (Achaogen, Inc. South San Francisco, CA) is a combination of a 3<sup>rd</sup> generation cephalosporin (ceftibuten) and a beta-lactamase inhibitor (clavulanic acid) displaying activity against highly resistant gram-negative nonfastidious organisms, including Extended Spectrum Beta Lactamase (ESBL) producing strains of *Enterobacteriaceae*. A 4-site evaluation was designed to determine the accuracy and reproducibility of T/CA susceptibility testing against non-fastidious gram negative organisms using the Thermo Scientific™ Sensititre™ dried MIC susceptibility system compared with the CLSI (M07, M100)/ ISO 20776-1, ISO 20776-2 (CLSI/ISO) reference broth microdilution method (BMD). Materials and Methods: The Sensititre 18-24 Hour MIC or Breakpoint Susceptibility System with T/CA in the dilution range of 0.03/0.015-32/16µg/ml was tested against 455 recent clinical, challenge, and reproducibility Enterobacteriaceae isolates. The Sensititre dried MIC susceptibility system was inoculated per manufacturers' instructions. BMD was performed per CLSI/ISO guidelines. Recommended CLSI quality control (QC) organisms were tested daily and all results were within the published QC ranges. Results: Comparisons of the indicated gram-negative non-fastidious organisms MIC results on the Sensititre system to the CLSI/ISO BMD for automated and manual reads resulted in 96.6% and 97.5% essential agreement (EA; +/- 1 log<sub>2</sub> dilution) for T/CA, respectively. Overall agreement for the reproducibility (+/- 1 log<sub>2</sub> dilution of the modal MIC) using automated and manual reads was 99.7% and 99.0% respectively. **Conclusion:** The Sensititre susceptibility system demonstrates an equivalent level of performance compared to the CLSI/ISO BMD method when testing T/CA against gram negative non-fastidious organisms. The high level of agreement obtained by the Sensititre susceptibility system and the CLSI/ISO BMD method suggests that this is an acceptable method for susceptibility testing of T/CA.

#### INTRODUCTION

Ceftibuten-clavulanic acid is combination of ceftibuten, an approved third generation cephalosporin, and claulanate, an approved beta-lactamase inhibitor. This agent, T/CA, has demonstrated *in vitro* activity and *in vivo* efficacy against complicated urinary tract infections (cUTI) caused by *Escherichia coli* and *Klebsiella pneumoniae* that produce extended spectrum beta lactamase (ESBL). This *in vitro* comparison study was done to validate the performance of ceftibuten-clavulanic acid on the commercially manufactured Thermo Scientific<sup>TM</sup> Sensititre<sup>TM</sup> 18 – 24 hour Dried Susceptibility Plate with the standard reference broth microdilution method recommended by the Clinical and Laboratory Standards Institute (CLSI M07/ M100) and ISO (20776-1). To establish equivalency for both auto and manual read methodologies, a series of studies were conducted at 4 trial sites including testing of clinical/challenge, reproducibility and quality control isolates.

### **MATERIALS AND METHODS**

●The Sensititre 18-24 hour MIC or breakpoint susceptibility system (Thermo Fisher Scientific, Oakwood Village, OH) is an *in vitro* diagnostic product for clinical susceptibility testing of both fastidious and non-fastidious organisms. ceftibuten-clavulanic acid was tested against: (Table 1.)

- 367 recent clinical gram-negative isolates across the four sites
- 77 challenge isolates at a single testing site
- 11 reproducibility isolates at each site (tested in triplicate over a 3 day testing period)
- 4 Quality Control Strains (ATCC) (Table 2.)



#### **MATERIALS AND METHODS Cont.**

- Colony Counts and purity plates were performed on the inoculums of the Clinical, Challenge, Reproducibility and QC strains on each day of testing.
- Each isolate was tested using a:
  - Dried Sensititre 18–24 susceptibility plate containing ceftibuten-clavulanic acid (0.03/0.015-32/16µg/ml). The dried plates were set up and tested by both automated and manual reading methodologies according to the manufacturer's instructions.
  - Reference broth microdilution plate was prepared and tested on each isolate according to the current Clinical Laboratory Standards Institute and ISO standard method.

| Table 1. Organisms Tested                                                                                     | Number Tested |
|---------------------------------------------------------------------------------------------------------------|---------------|
| Clinical Isolates (4 sites)                                                                                   | 367           |
| Challenge Isolates (one site)                                                                                 | 77            |
| Reproducibility Isolates (4 sites) (3 x day for 3 days)                                                       | 11 (396)      |
| ATCC Quality Control Strains (at least 20 replicates of each strain at 3 sites, 1 site yielded fewer results) | 4 (323)       |
| TOTAL                                                                                                         | 1163          |

#### **Quality Control**

- Recommended CLSI quality control (QC) organisms were tested daily and were within the CLSI expected QC ranges.
- Colony counts were performed and fell within expected ranges Reference 2-8X10<sup>5</sup> CFU, Sensititre 5X10<sup>4</sup>-5X10<sup>5</sup> CFU

| Table 2. Quality Control Strains  | Expected CLSI QC Ranges (µg/ml) |  |  |
|-----------------------------------|---------------------------------|--|--|
| Escherichia coli ATCC 25922       | 0.12/0.06-0.5/0.25              |  |  |
| Escherichia coli NCTC 13353       | 0.25/0.12-1/0.5                 |  |  |
| Pseudomonas aeruginosa ATCC 27853 | >32/16                          |  |  |
| Klebsiella pneumoniae ATCC 700603 | 0.06/0.03-0.25/0.12             |  |  |

# Results

Essential agreement for ceftibuten-clavulanic acid on the Sensititre susceptibility plate compared to the reference microdilution plate was calculated for each read method (Auto and Manual) using the  $\pm 1 \log_2$  dilution standard. Essential agreement rates are shown for gram-negative non-fastidious isolates in **Tables 3 and 4**.

#### Clinical Isolates and Challenge Organisms

The overall essential agreement for ceftibuten-clavulanic acid within  $\pm 1 \log_2$  dilution was **96.6%** for the auto read method and **97.5%** for the manual method.

#### **Inter-laboratory Reproducibility**

Reproducibility testing results for ceftibuten-clavulanic acid within ±1 log<sub>2</sub> dilution from the modal MIC was **99.7%** for the auto read method and **99.0%** for the manual method.

Table 3. Summary Data and % Essential Agreement of Gram-Negative Non-Fastidious Clinical and Challenge Isolates Using the Manual Read Method

The overall essential agreement for ceftibuten-clavulanic acid within +/- one log<sub>2</sub> dilution, was 97.5% for the manual read method

#### **Combined Total Isolates**

| Ceftibuten-clavulanic acid | Number o | Number of Isolates |       | Essential Agreement |        | Essential Agreement % Essential Agreement |  |  |
|----------------------------|----------|--------------------|-------|---------------------|--------|-------------------------------------------|--|--|
| Organism Group             | All      | Evaluable          | Total | Evaluable           | Total  | Evaluable                                 |  |  |
| Escherichia coli           | 102      | 86                 | 97    | 81                  | 95.1%  | 94.2%                                     |  |  |
| Klebsiella pneumoniae      | 94       | 59                 | 90    | 56                  | 95.7%  | 94.9%                                     |  |  |
| Klebsiella oxytoca         | 43       | 9                  | 43    | 9                   | 100.0% | 100.0%                                    |  |  |
| Enterobacter cloacae       | 62       | 35                 | 61    | 34                  | 98.4%  | 97.1%                                     |  |  |
| Klebsiella aerogenes       | 39       | 29                 | 39    | 29                  | 100.0% | 100.0%                                    |  |  |
| Citrobacter freundii       | 26       | 22                 | 25    | 21                  | 96.2%  | 95.5%                                     |  |  |
| Serratia marcescens        | 26       | 24                 | 26    | 24                  | 100.0% | 100.0%                                    |  |  |
| Proteus vulgaris           | 23       | 1                  | 23    | 1                   | 100.0% | 100.0%                                    |  |  |
| Proteus mirabilis          | 29       | 3                  | 29    | 3                   | 100.0% | 100.0%                                    |  |  |
| Total                      | 444      | 268                | 433   | 258                 | 97.5%  | 96.3%                                     |  |  |

Table 4. Summary Data and % Essential Agreement of Gram-Negative Non-Fastidious Clinical and Challenge Isolates Using the Auto Read Method

The overall essential agreement for ceftibuten-clavulanic acid within +/- one log<sub>2</sub> dilution, was 96.6% for the auto read method

# **Combined Total Isolates**

| Ceftibuten-clavulanic acid | Number of Isolates |           | Essential Agreement |           | nber of Isolates Essential Agreemer |           | ssential Agreement % Essential Agreement |  |  |  |
|----------------------------|--------------------|-----------|---------------------|-----------|-------------------------------------|-----------|------------------------------------------|--|--|--|
| Organism Group             | All                | Evaluable | Total               | Evaluable | Total                               | Evaluable |                                          |  |  |  |
| Escherichia coli           | 102                | 86        | 97                  | 81        | 95.1%                               | 94.2%     |                                          |  |  |  |
| Klebsiella pneumoniae      | 94                 | 59        | 89                  | 55        | 94.7%                               | 93.2%     |                                          |  |  |  |
| Klebsiella oxytoca         | 43                 | 8         | 43                  | 8         | 100.0%                              | 100.0%    |                                          |  |  |  |
| Enterobacter cloacae       | 62                 | 32        | 60                  | 30        | 96.8%                               | 93.8%     |                                          |  |  |  |
| Klebsiella aerogenes       | 39                 | 26        | 39                  | 26        | 100.0%                              | 100.0%    |                                          |  |  |  |
| Citrobacter freundii       | 26                 | 21        | 25                  | 20        | 96.2%                               | 95.2%     |                                          |  |  |  |
| Serratia marcescens        | 26                 | 23        | 25                  | 23        | 96.2%                               | 100.0%    |                                          |  |  |  |
| Proteus vulgaris           | 23                 | 1         | 22                  | 1         | 95.7%                               | 100.0%    |                                          |  |  |  |
| Proteus mirabilis          | 29                 | 3         | 29                  | 3         | 100.0%                              | 100.0%    |                                          |  |  |  |
| Total                      | 444                | 259       | 429                 | 247       | 96.6%                               | 95.4%     |                                          |  |  |  |





# **RESULTS Cont.**

Table 5. Inter-laboratory Reproducibility % Essential Agreement  $\pm 1 \log_2$  dilution from the Modal Value

| Ceftibuten-clavulanic acid                        | Auto Read    | Manual Read |
|---------------------------------------------------|--------------|-------------|
| Between-site total isolates tested                | 396          | 396         |
| Between-site isolates within +/- 1 well from mode | 395          | 392         |
| Between-site reproducibility ratio                | 395          | 392         |
| Between-site reproducibility %                    | 99.7%        | 99.0%       |
| Total essential agreement                         | 395/396      | 392/396     |
| Essential agreement %                             | <u>99.7%</u> | 99.0%       |

# **CONCLUSIONS**

This study validates that the Sensititre 18–24 hour susceptibility system (both auto read and manual read) demonstrated an equivalent level of performance compared to the CLSI M07/M100 and ISO 20776-1 reference broth microdilution plate when testing ceftibuten-clavulanic acid against gram-negative non-fastidious clinical and challenge isolates. This study suggests that this is an acceptable method for susceptibility testing of ceftibuten-clavulanic acid.

# **REFERENCES**

Clinical and Laboratory Standards Institute. 2015. *Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically; approved standard-tenth edition.* Approved document M07-A10. Wayne, PA: CLSI.

Clinical and Laboratory Standards Institute. 2018. Performance Standards for Antimicrobial Susceptibility Testing; Twenty-eighth Informational Supplement M100-S28. Wayne, PA: CLSI.

FDA Guidance for Industry and FDA Class II Special Controls Guidance Document: Antimicrobial Susceptibility Test (AST) Systems, August 28, 2009.

Clinical laboratory testing and in vitro diagnostic test systems - Susceptibility testing of infectious agents and evaluation of performance of antimicrobial susceptibility test devices - Part 1: Reference method for testing the in vitro activity of antimicrobial agents against rapidly growing aerobic bacteria involved in infectious diseases (ISO 20776-1:2006).

© 2019 Thermo Fisher Scientific Inc. All rights reserved. All trademarks are the property of Thermo Fisher Scientific and its subsidiaries unless otherwise specified.

