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XPS Surface Analysis
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« UV Photoelectron Spectroscopy
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XPS + ...

« UV Photoelectron Spectroscopy
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XPS + ...

« UV Photoelectron Spectroscopy
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(Some) other analysis techniques

XPS EDS Raman FTIR XRF XRD

Quantitative High spatial Chemical Chemical Elemental Structural
chemical resolution bonding bonding composition information
state imaging information information

High Crystallinity
Molecular sensitivity and
‘fingerprint’ composition

Very Rapid Structural
surface image information
sensitive analysis
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Other techniques

XPS EDS Raman XRF

Quantitative High spatial Chemical Elemental
chemical resolution bonding composition
state imaging information

High
Very Rapid Structural sensitivity

surface information
sensitive
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Raman Spectroscopy
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XPS with IXR Raman Spectrometer

¢ Integration of small form factor Thermo
Scientific™ iXR Raman spectrometer with

* Thermo Scientific™ Theta Probe and
* Thermo Scientific™ Nexsa XPS systems

 Allows simultaneous acquisition of
Raman & XPS data

« Correlated analysis position
* No need to move the sample to acquire data

* Analysis area is matched

« Software control allows complex hybrid
experiments
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Co-alignment of analysis positions

600% Zoom
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Lithium niobate
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Lithium niobate...?
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Bulk vs surface

» For strongly absorbing materials such as semiconductors, the Raman signal is acquired
from a volume defined by the Raman penetration depth and the diameter of the laser

beam

* A lower laser wavelength gives smaller penetration and provides chemical information

closer to the samples surface

* Nominal XPS sampling depth is < 10 nm

Laser
Wavelength

Penetration
Depth in Si

Penetration
Depth in Ge

Penetration depth in a

transparent Polymer
Film (nm)

>5000
>5000
>5000
>5000
>5000
>5000

—

Surface (1 nm) 3 atomic layers

-

Ultra-thin film (1 to 10 nm)
3 - 30 atomic layers

Thin Film (10 nm to 2pm)
30 - 600 atomic layers

—l
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Lithium niobate with yttrium oxide coating
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Applications Area: Carbon
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Graphene on SIO,

Atomic % Profile Raman PCA 1 Atomic % Profile Raman PCA 2
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Raman imaging of damaged graphene layer deposited on a silicon wafer
(Mapping controlled through Avantage software)
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Graphene — PCA analysis of map
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Graphene - XPS

Contamination

Contamination /

Both areas are contaminated by the adhesive material in the container that the sample was face down on.
Not visible in Raman, but easy to see in XPS.
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TiO, powders Introduction
» Material of great interest due to its application

* Titanium dioxide (TiO,)
o Oxygen
in heterogeneous catalysis, dye-sensitised

solar cells, bone implants and self-cleaning @ Titanium
windows, amongst others

* Frontier material in the development of
nanotechnology, nanoparticles, nanorods etc.
fabricated to improve application properties

* Most abundant polymorphs are rutile and
anatase

» Degree of mixing between two polymorphs
influences material properties, such as

catalytic activity Rutile-TiO,

20 ThermoFisher



TiO, powders

XPS of single polymorph

» Core level XPS spectra show
identical elemental and
chemical composition for pure
anatase and pure rutile
samples

* There is a slight variation in
peak shape of valence band,
however this is not conducive
to easy quantification of the
amount of polymorph.
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Ti02 powders Raman spectroscopy of single polymorphs

Raman TiO, spectra — Linear background subtracted

* Raman spectra were acquired | 6357-67106 51?-3 445839§-7
from pure anatase-TiO, and \ i
rutile-TiO, powders

£

* Pure spectra can be used as g
reference for determining the 2 |
composition of powders with £
different proportions of anatase
and rutile
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TiO, powders

Pure Anatase reference

Sample #1
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Raman spectroscopy of mixed powders

Mixed powder spectrum
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Adding extra analytical techniques increases
the information that can be obtained.

Matching the technique to the application is
important

Having co-incident analysis points ensures that
the data is collected from the same point on
the sample, but...

...consideration must be made of variations
between analysis volumes.

Offers opportunities for
* Bulk — surface studies

« Carbon nanomaterials

« Coating analysis
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