

Thermo Fisher SCIENTIFIC

Monatomic and Cluster Argon Ion XPS Depth Profiling of SrTiO₃ and HfO₂

Paul Mack, Thermo Fisher Scientific

The world leader in serving science

Introduction: Depth profiling of metal oxide layers

Sample structure

- HfO₂ or SrTiO₃ layer on Si substrate
- Problem
 - What is the stoichiometry of the film as a function of depth?
 - Traditional monatomic Ar+ sputtering causes changes in oxidation state when profiling metal oxides
 - How can we profile through the sample, keeping the chemistry intact?
 - Argon clusters with ≥2000 atoms are good for profiling through organic layers with minimal chemical damage
 - These large clusters etch too slowly with inorganic materials

Introduction: Monatomic versus cluster profiling

- Monatomic ions (Ar⁺)
 - High energy per atom (200eV 4keV)
 - High etch rate
 - Deep surface penetration
 - Can damage surface chemistry
 - Ideal for etching inorganic material
- Cluster ions (Ar⁺_n)
 - Low energy per atom (1eV 100eV)
 - Minimal surface penetration
 - Non-damaging to surface chemistry
 - Low etch rate for large clusters
 - Large clusters ideal for etching organic material

 \bigcirc

Introduction: Small clusters for inorganic profiling

Energy per atom versus cluster size for different beam energies

Monatomic Argon profile - SrTiO₃ film on Si

- Monatomic Argon profile
 - 500eV beam energy
 - Sr:Ti ratio is expected to be 1:1 throughout film but ~0.75:1 observed instead
 - Monatomic Argon beam is modifying the stoichiometry of the film

Monatomic Argon profile – Titanium chemistry SrTiO₃ film on Si

- Monatomic Argon profile
 - Ti2p spectrum from <u>as received</u> surface shows only peaks due to Ti4⁺ chemical state (as expected for SrTiO₃)
 - After only 90s of 500eV Ar⁺ profiling, a significant intensity of lower oxidation states (Ti³⁺, Ti²⁺) are observed in the spectrum
 - ~45% of the Ti2p spectrum is due to these damaged states after 500eV sputtering

Argon small cluster profile - SrTiO₃ film on Si

- Argon small cluster profile
 - 8keV, Ar300⁺ small cluster beam
 - Etch rate is comparable to the 500eV monatomic profile (0.07 nm/s)
 - With small cluster profiling, the Sr:Ti ratio is much closer to the expected 1:1 value
 - Small cluster beam is much better at preserving the elemental composition of the SrTiO₃ film, compared to the 500eV monatomic beam

Argon small cluster profile – Titanium chemistry - SrTiO₃ film on Si

- Argon small cluster profile
 - Ti2p spectrum from <u>as received</u> surface shows only peaks due to Ti⁴⁺ chemical state (as expected for SrTiO₃)
 - After 90s of 8keV Ar₃₀₀⁺ profiling, the damage to the titanium is considerably lower than was observed for the 500eV monatomic beam
 - Small cluster profiling only caused the production of Ti³⁺ states, whereas monatomic profiling generated Ti³⁺ and the more reduced Ti²⁺ state in similar quantities

Low energy (500eV) monatomic Argon profile - HfO₂ film on Si

- Significant change in [Hf]/[O] ratio in top few nm, caused by preferential sputtering of oxygen
- Damage to Hf chemistry, as observed in Hf4f spectra (almost 50% on total Hf concentration in film)
- Prolonged tailing of Hf damaged into Si substrate

Small Argon cluster (8keV, Ar⁺₁₅₀) sputter profile - HfO₂ film on Si

- Sample tilted to give more glancing ion incidence during sputtering
- Constant [Hf]/[O] ratio throughout film (minimal preferential sputtering of oxygen)
- No significant damage to Hf chemistry, until well into interface region (much less damage compared to 500eV monatomic mode)

Conclusion - HfO₂ film on Si

Thermo Scientific Monatomic and Gas Cluster Ion Source (MAGCIS)

- Small cluster profiling of HfO₂ and SrTiO₃ films
- Monatomic and Gas Cluster Ion Source
 - Comprehensive XPS profiling with small Argon clusters (75-300 atoms) enables HfO₂ films to be analysed with lower chemical damage than monatomic Argon

