

R. M. Young Model 05103 Wind Monitor

Introduction

The R. M. Young model 05103 Wind monitor measures horizontal wind speed and direction. The wind speed is detected via a propeller produces an AC sine wave signal with frequency proportional to wind speed.

The wind direction is via a weather vane whose position is transmitted by a precision potentiometer. With a constant voltage applied to the potentiometer, the output signal is an analog voltage directly proportional to wind direction angle.

Requirements

DT80 Range Series 2 *dataTaker* data logger. R. M. Young Model 05103 Wind monitor. Wiring.

Wind speed

The wind speed output is a Hall Effect out put with 6 pulses per revolution. This type of output can be fed directly into high speed counters 1C or 2C as they have low threshold capability. A polynomial is an easy method to scale the pulses to velocity. The first term of the polynomial being 0 and the second term the supplies calibration factor.

Wind direction

The wind direction output is a 10 kOhm continuous turn potentiometer. R. M. Young recommends this is powered with Voltage excitation and read as a Voltage. The *dataTaker* can supply a Voltage of approximately 4 VDC to excite the potentiometer using the V channel option. For best accuracy the *dataTaker* measures the potentiometer excitation Voltage, then the potentiometer output Voltage. The ratio of the two is then used to calculate the wind direction.

Because the supply Voltage of 4 VDC exceeds the normal input range of the **DT80** range the High Voltage (HV) channel type must be used to avoid over ranging the input.

It should be noted that while the vane can rotate through 360 degrees the output has a dead band of 5 degrees so the physical output is a maximum of 355 degrees.

Physical Connections:

Junction box	DT80 range logger
Shield	DGnd.
Earth Ground	DGnd.
WS REF	DGnd.
WD REF	Analog #
WD SIG	Analog -
WD EXC	Analog * with link to +
WS SIG	1C or 2C (High speed counters)

Note: The Jumper for common reference, J1, must be removed. This jumper physically links the Analog and Digital grounds thus breaking the isolation of the DT80 Analog sub-section and the Digital sub-section. If left connected may cause noise and ground loop problems. Please refer page 5 of the R.M. Young 05103 manual for further details on removing this link.

Programming;

WIND SPEED vs OUTPUT FREQUENCY m/s = $0.0980 \times Hz$ knots = $0.1904 \times Hz$ mph = $0.2192 \times Hz$ km/h = $0.3528 \times Hz$

Example code; DeTransfer or web UI

BEGIN

```
DT80 Code to read R. M. Young Model 05103 Wind monitor.
dataTaker Tech Support 21 Oct 2008
```

Y1=0,0.098"m/s"

'Scaling from frequency to m/s

RA1S

```
1HSC(LT,R,RS,Y1)'Read frequency in Hz and scale to m/s1+HV(V,=1CV,W)'Read excitation Voltage1-HV(V,=2CV,W)'Read output Voltage3CV(ff2,S2)=(2CV/1CV)*360'Calculate wind direction.
```

END

DeLogger5

Configuring Wind speed

In the *DT80* program builder click on scaling tab and enter the wind speed conversion factor as the first two terms of a polynomial. (Fig 1.)

Type - Span Type - Polynomial		nial	Physical 1 Coefficient 0	Physical 2 Coefficient 1	Signal 1 Coefficient 2	Signal 2 Coefficient 3	Coefficient 4	Coefficient 5	Text (Units) Text (Units)			
Polynomial -		•	0	0.0980					m/s			
		•										
i	ate A B C D E F G H I J K X Scaling (Thermistors) Switches Parameters Global /											

Fig 1. Defining the wind speed scaling.

In the schedule where the data is to be reported select; Signal; Counter Type; High Speed Counter Wiring; High speed counter number

> Resetting counter Low threshold

This will create the channel definition as per Fig.2

Signal	Туре	Wiring	1				
Counter	HSC	1HSC(R,LT)					

Fig.2. Channel type configuration for wind speed.

Channel options required to complete the configuration select; Scaling; Polynomial created in Fig. 1 Data manipulation: RS.

This will create the channel options as per Fig.3.

	Scaling	Destination	Alarm	Statistical	Variables	Data Manipulation
ſ	Y1 🚽					RS

Fig. 3. Channel options required for wind speed.

Configuring Wind Direction

The wind direction requires us to read two High Voltage channel types and read the values into a channel variable. The ratio of the output to input is then calculated and scaled to degrees.

To read sensor excitation Voltage select (Fig.4.);

Signal; Voltage Type: High Voltage. Wiring; Channel Number Shared input between + and # terminals

Signal	Туре	Wiring	
Counter	HSC	1HSC(R,LT)	
Voltage	ΗV	1+HV	

Fig. 4. Wind direction excitation Channel Type.

Channel options required to complete the configuration select;

Destination; W (Working channel) Variables: =nCV. CV Number: 1

This will create the channel options as per Fig. 5.

Factor	Scaling	Destination	Alarm		Statistical		Variables		Da
	Y1								RS
		W					=1CV		

Fig.5. Sensor excitation channel option.

To read sensor output Voltage select (Fig. 6.);

Signal; Voltage Type: High Voltage. Wiring; Channel Number Shared input between - and # terminals

Shared input between - and # term

Signal	Туре	Wiring		L
Counter	HSC	1HSC(R,LT)		
Voltage	ΗV	1+HV		
Voltage	ΗV	1-HV		
			_	

Fig. 6. Sensor excitation channel options

Channel options required to complete the configuration select;

Destination;	W (Working channel)
Variables:	=nCV.
CV Number:	2.

This will create the channel options as per Fig. 7.

Scaling	Destination	Alarm		Statistical		Variables	
Y1		,					
	W					=1CV	
	W					=2CV	

Fig. 7. Sensor output channel options.

To calculate the Wind Direction select (Fig. 8.); Signal; Channel Variable Type; CV

				_
Signal	Туре	Wiring		L
Counter	HSC	1HSC(R,LT)		
Voltage	ΗV	1+HV		
Voltage	ΗV	1-HV		
Channel Variable	CV	1CV		
			_	

Fig. 8. Wind Direction calculated channel

Then click on Wiring and enter (2CV/1CV)*360 in the formula window and select the output Channel Number (Channel Variable number) (Fig. 9.)

Channel Vari	ables		×
Channel N	umber 3	÷	OK Cancel
Calculation			
Arithmetic	Relational	Logical	Functions
+	< <= = >= >	AND OR XOR NOT	ABS() LOG() LN() SIN() COS() TAN()
= [(2cv/1cv)*	360		

Fig. 9. Calculation of wind direction normalized for excitation Voltage

The final *DeLogger* screen will look similar to Fig. 10.

Ī	Signal	Туре	Wiring	Label	Factor	Scaling	Destination	Alarm	Statistical	Variable	es	Data Mar
Ĩ	Counter	HSC	1HSC(R,LT)	 Wind speed		Y1						RS
Ĩ	Voltage	ΗV	1+HV				W			=1CV		
Ĩ	Voltage	ΗV	1-HV				W			=2CV		
Ī	Channel Variable	CV	3CV=(2cv/1	 Wind direction								

Fig. 10. *DeLogger DT80* program builder configuration.

Biolab (Aust) Pty Ltd trading as Datataker – 5 Caribbean Drive, Scoresby, Victoria 3179, Australia Tel:+61 3 9757 4477 Fax:+61 3 9753 3483 A.B.N. 52 058 390 917 Email: <u>sales@datataker.com.au</u> Web: <u>www.datataker.com</u> Page 5 of 5