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Introduction

Quantitation of differentially expressed proteins is one of
the most challenging areas in proteomics. A variety of
quantitation methods have been developed, including
isotope labeling approaches like ICAT®!, SILACZ iTRAQ"™3,
AQUA*, and Tandem Mass Tag® (TMT®)’. In contrast to
MS-based quantitation methods, iTRAQ- and TMT-labeled
peptides are identified and quantitated by MS/MS. Pulsed-Q
Dissociation (PQD)% has been developed to facilitate
quantitating of the low-mass reporter ions in MS/MS spectra
of iTRAQ- or TMT-labeled peptides. The PQD technique
enables the detection of low-mass fragments in MS/MS mode
including y1- and b1-type fragment ions, and also allows
the quantitation of peptides using the TMT reporter ions
which appear in the 100 m/z range.?

Goal

To demonstrate the benefits of the PQD-based quantitation
of isobarically labeled peptides in protein digests.

Experimental Conditions

Preparation of TMT-labeled Peptides

A protein mixture containing ten standard proteins in
various concentrations was denatured, reduced, alkylated
and digested. After the digestion, six individual fractions
of this ten-protein mixture were labeled according to
manufacturer provided protocol with 126, 127, 128, 129,
130 and 131 tags. The contents of the labeled samples
were then combined into one tube in a one-to-one ratio.
The sample was then cleaned with a Thermo Scientific
PepClean C-18 Spin column. The resulting sample mixture
was used for both infusion and HPLC-MS/MS analyses.

LC Separation and MS Analysis

LC Separation

HPLC: Thermo Scientific Surveyor equipped with
Micro AS autosampler

Columns: PicoFrit™column (10 cm x 75 pm i.d.),
(New Objective, Inc., Cambridge, MA)

Sample: Inject 2 L TMT-labeled digest mixture

Mobile Phases: A: 0.1% Formic acid in water

B: 0.1% Formic acid in acetonitrile

Gradient: 10% B 10 minutes, 10% — 30% in 120 minutes
Flow: 300 nL/min on column
MS Analysis

Mass Spectrometer: Thermo Scientific LTQ XL equipped with a
nanospray ion source
Spray Voltage: 2.0kV

Capillary Temperature: 160 °C

Full MS: 300-1600 m/z
Isolation: 3Da
MS2 AGC Target 4e4, 3 microscans

Collision Energy: 32% PQD
Data-dependent MS/MS:  Top 4

Database Search and Quantitation

Thermo Scientific Proteome Discoverer 1.0 software with
SEQUEST® was used for data analysis. TMT modification
of 229.16 on lysine and the peptide N-terminal amino acid
were used for database searching. For high-confidence
peptide identification, a peptide probability of middle, and
peptide Xcorr vs charge (1, 2, 3) = 1.5, 2.0, 2.5 were used.
Peptides that fell outside two standard deviations for
relative expression quantitation ratio were removed for
peptide reproducibility calculations.
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Figure 2: PQD and CID spectra of peptide L*VNELTEFAK from BSA
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Figure 3: Collision-energy optimization for both PQD and CID using peptide
F*ESNFNTQATNR from lysozyme (*Indicates TMT® label)
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Figure 1: Schematic of dissociation process

Results and Discussion

PaD

PQD can be regarded as a three-step dissociation process
involving the variation of key parameters such as the
resonance excitation amplitude and the main RF amplitude.
The first step involves putting the precursor ion at a high-q
value (0.6 - 0.8), and using a short (~100 ps), high amplitude
resonance excitation pulse as shown in the schematic in
Figure 1. In this step, the ions with m/z resonant to this
excitation pulse absorb energy and become kinetically
excited. Next, ions are held at the high q value for a short
delay time (~100 ps), which is long enough for the kinetic
energy of the ions to be converted into internal energy
through collisions, but not long enough for significant
dissociation to occur. Subsequently, the precursor ions’ q
value is pulsed to a low value by rapidly dropping the RF
amplitude and then allowing the precursor ions to undergo
fragmentation at this low q value. The combination of
activating at high q values (high energies) and collecting
fragments at low q values (to trap low-m/z fragments)
results in an information-rich spectrum including low-mass
fragment ions.

PQD Applications

With the capability to trap and detect lower-m/z product
ions, PQD has been applied to peptide quantitation using
such methods as stable isobaric labeling, including TMT.
An infusion experiment was done first to study the feasibility
of the experiment. It has been shown that the fragment
reporter ions generated by the labeled peptides and
appearing in the m/z range of 126-131 can be identified and
quantitatively measured. Figure 2 shows the CID and PQD
spectra of a peptide (L*VNELTEFAK) from BSA. The
peptide could be identified from both spectra, however,
PQD also generated reporter ions in the m/z range of
126-131 with sufficient intensity for quantitation.
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Figure 4: CE optimization for peptide FFESNFNTQATNR from lysozyme (*indicates TMT® label)

PQD Optimization

The PQD process is quite different than CID in that the dissociation
kinetics have a significant effect on the performance of PQD and on
the PQD parameters. The collision energy is normalized to a range
similar to that used in CID. However, the actual voltage used for
PQD is approximately seven to ten times higher than is used for
CID. As a consequence, the range of working collision energies is
much narrower for PQD than CID and needs to be optimized for
compounds of interest. Figure 3 shows the PQD and CID collision-
energy optimization profile for the peptide F*ESNFNTQATNR from
the protein lysozyme. The peptides were identifiable from PQD
spectra that used 28% to 48% collision energies. Among those, the
peptides that were fragmented with 28% to 38% collision energies
were quantitatable (i.e. had sufficient intensity of reporter ions
present). Figure 4 displays PQD MS? spectra generated at various
collision energies. The data show that 32% collision energy
generated optimal qualitative and quantitative spectra. Therefore,
32% collision energy was chosen for later experiments. For CID, in
contrast to PQD, the peptides were identifiable with a much wider
optimal collision-energy range from 20% to 60%.

The PQD parameters activation q and activation time (high q
delay time) should also be optimized for the compound of interest.
As indicated in Figure 1, the activation q is only applied during
activation and not during fragment ion accumulation. It directly
affects the amount of kinetic energy the precursor ion obtains, and
therefore the MS/MS spectrum. It was reported that changing q to a
lower value (0.55) than the default setting (0.7) with a longer delay
time would yield more reproducible reporter ions for quantitation.’
Figure 5a compares the spectra using the two sets of parameter values.
The default values generate slightly lower relative abundances of the
reporter ions. Figure 5b contains the fixed-scale spectra generated
from the two conditions. In fact, the spectrum generated using the
default values has somewhat higher reporter ion intensities. The
reproducibility of the reporter ions for quantitation is comparable
for both settings. In the PQD process, using too much collision
energy can eject precursor ions before they can fragment, thus
lowering abundance of the fragments. Optimization of the PQD
collision energy should be done by maximizing the fragment ion
intensity, and not by minimizing the precursor intensity. Typically, a
spectrum optimized for PQD efficiency contains significant precursor
ion intensity. Therefore, in general, the default value should be
sufficient for most analyses.
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Figure 5, Top: PQD spectra acquired at different parameter values; Bottom: top normalized.




Experimental Workflow for Relative
Quantitation of Isobarically Labelled Collision Energy
Peptides and PQD MS" Target Value

Activation Time

Figure 6 depicts an experimental workflow

for analysis of TMT-labeled peptides by PQD. SetU

p Method H MS Full Scan H PQD
Based on an infusion experiment, 32% collision ‘ * ‘ ‘ ‘
energy was found to be optimal. Since MS/MS

data were used to quantitate the peptides, the
MS/MS sensitivity and reproducibility were Protein Identification

o .
critical, and therefore the MS” AGC target ‘ Data Analysis —3 ‘ Protoome Di - z
Protein Quantification

value was increased to four times the default
AGC MS” target value. Also, dynamic exclusion
with a repeat count of 4 was chosen for LC/MS  Figure 6: PQD experimental workflow
analysis allowing more data points for
quantitation statistics. The ten-protein mixture
was labeled with TMT tags and mixed 1:1, [0]
followed by LC/MS analysis using optimized Rawfile Selector

experimental conditions. The data was analyzed

in Proteome Discoverer using a SEQUEST / \
search. Protein identification was conducted

first, considering the TMT modification

(K, +229; N-terminus, +229 and C, +58).
Quantitative protein analysis was accomplished
using the Reporter Ions Quantitizer as shown
in Figure 7. The identified proteins were filtered
with Xcorr vs charge (1, 2, 3) = 1.5, 2, 2.5,
and peptide misidentification probability set [2]

[11 [3]
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. .. . . Sequest
at middle. Protein identification results, 4
including protein coverage and relative ratios
are reported for all ten identified proteins as Figure 7: TMT quantitation workflow in Proteome Discoverer
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level is depicted in Figure 9, using myoglobin
peptides as an example. Peptide quantitation
was calculated after removing outliers outside a0 5
of the range of two standard deviations. 200 2
The remaining identified peptides were used
for the reproducibility calculation. The relative
standard deviation was in the range of

2% to 17%.

For comparison, the same experimental
conditions were applied for an iTRAQ-labeled
sample. Similar protein identification and
quantitation results were achieved. o - - ‘ ‘ ‘ ‘
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Figure 8: Protein identification and quantitation in Proteome Discoverer. Lower panel:
Reporter ion intensities for G*YSLGNWVCAAK from lysozyme (*Indicates TMT® label)
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sensitive iTRAQ quantitation on an LTQ-Orbitrap mass spectrometer.

e The PQD fragmentation technique produces high qualit
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MS/MS spectra with good signal to noise for TMT
reporter ions.

* The accuracy of the TMT ratios was better than
19% on the protein level.

e Proteome Discoverer performs protein identification and
protein quantitation using the MS/MS spectra generated
by PQD. Reporter ion intensities of the MS/MS spectra
were successfully used for peptide and protein quantitation.
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