APPLICATION NOTE

How to sequence single- and dual-indexed libraries together

Summary

- Single-index sequencing is ideal for fast processing of workflows that require a low level of multiplexing.
- Many researchers have turned to dual indexing for applications that require high levels of multiplexing, and there is a misconception that co-sequencing of single- and dual-indexed libraries together is challenging. In reality, combining these methods helps save time and costs.
- The addition of one simple step to the workflow of the Invitrogen[™] Collibri[™] Stranded RNA Library Prep Kit for Illumina[™] Systems enables robust construction of single-indexed cDNA libraries for strand-specific RNA sequencing that can be co-sequenced with dual-index Collibri Stranded RNA or other dual-indexed libraries.

Introduction

Indexed sequencing allows multiple libraries to be pooled and sequenced together, and requires the addition of a unique identifier (index) to DNA samples during library preparation. Libraries are then pooled and sequenced, and index reads are used during downstream analysis to identify and separate the sample libraries.

The choice between single indexing (where one index read is performed) or dual indexing (where both an index 1 read and index 2 read are required) depends on various factors. The main benefit of single indexing is that it has a shorter run time, as only the i7 index needs to be read, and is ideal for workflows that don't involve high levels of library multiplexing or don't require ultrahigh resolution. However, the increased throughput of current DNA sequencing instruments means that sample multiplexing is attractive, making it more economically viable to combine single- and dual-indexed samples in a single workflow. The ability to sequence single- and dual-indexed libraries together offers the potential to combine dual-indexed multiplexing of numerous libraries with single indexing of a few libraries in a single workflow, saving precious time. The Collibri Stranded RNA Library Prep Kit for Illumina Systems enables construction of cDNA libraries for strand-specific RNA sequencing using either singleor dual-indexed primers on Illumina next-generation sequencing (NGS) systems, from RNA samples of various quality, including FFPE samples. With a rapid and simple library preparation workflow, the kit provides high-quality, sequencing-ready libraries.

Method

Illumina NGS systems use different i5 index read strategies, but it is simple to co-sequence single-indexed and dualindexed libraries together. After library preparation, all that is necessary is to specify the i5 index sequence in the sample sheet.

To pool single-indexed libraries prepared with the Collibri Stranded RNA Library Prep Kit for Illumina Systems with dual-indexed libraries, you will need to indicate an i5 index in the sample sheet, using the following sequences:

- TCTTTCCC for MiSeq[™], HiSeq[™] 2000, HiSeq[™] 2500, and NovaSeq[™] 6000 systems (Figure 1)
- AGATCTCG for iSeq[™] 100, MiniSeq[™], NextSeq[™], HiSeq[™]
 3000, and HiSeq[™] 4000 systems

invitrogen

The reads can then be automatically identified, ready for further downstream analysis, reducing the need for two separate workflows.

(Useder)	-							1		1	
[Header] IEMFileVersion	5										
Experiment Name	5										
Date Date											
Workflow											
Application											
Instrument Type											
Assay Index Adapters											
Description											
Chemistry	Default										
chemistry	Default										
[Reads]											
[ricadis]											
[Settings]											
Adapter	AGATCOCA	AGAGCACACCTC	TGAACTCCACT		1			1	1	1	1
AdapterRead2	AGATCGGAAGAGCACACGTCTGAACTCCAGTCA AGATCGGAAGAGCGTCGTGTAGGGAAAAGAGTGT										
Auapterneadz	AGAICGOA		I						_	1	
[Data]									\frown		
Lane	Sample ID	Sample Name	Sample Plate	Sample Well	Index Plate Well	17 Index ID	index	15 Index ID	index2	Sample_Project	Description
	Janpie_10	Sample_Name	Sample_Flate	Sample_weil	Index_Flate_Well	IX001	ATGCCTAA	Universal	TCTTTCCC	Sample_Project	Description
	2					IX001	GAATCTGA	Universal	TCTTTCCC	1	
	3					1X002	AACGTGAT	Universal	TCTTTCCC	1	
	4					IX003	CACTTCGA	Universa	TCTTTCCC	1	
	5					1X005	GCCAAGAC	Universal	TCTTTCCC		
	6					IX005	GACTAGTA	Universal	TCTTTCCC		
	7					IX000	ATTGGCTC	Universal	TCTTTCCC		
	8					1X007	GATGAATC	Universal	TCTTTCCC		
	9					IX008	AGCAGGAA	Universal	TCTTTCCC		
	10					IX003		Universal	TCTTTCCC		
	10					IX010	AAACATCG	Univeral	TCTTTCCC		
	11					IX011	GAGTTAGC	Universal	TCTTTCCC		
	12					IX012	CGAACTTA	Univeral	TCTTTCCC		
	14					IX013	GATAGACA	Universal	TCTTTCCC		
	14					IX014	AAGGACAC	Universal	TCTTTCCC		
	15		-	-		IX015	GACAGTGC	Universal	TCTTTCCC		
	10		-	-		IX010	ATCATTCC	Universal	TCTTTCCC		
	17		1			IX017	GCCACATA	Universal	TCTTTCCC	H	
	18		1			IX018	ACCACATA	Universal	тсттссс		
	20		-			1X019	CTGGCATA	Universa	TCTTTCCC		
	20		-			IX020	ACCTCCAA	Universa	TCTTTCCC	1	
	21					IX021 IX022	GCGAGTAA	Universal	TCTTTCCC	1	
	22					1X022	ACTATGCA	Universal	TCTTTCCC	1	
	23					1X023	CGGATTGC	Universal	TCTTTCCC	/	
	24		1		1	1024	COOMING	Universal 1	TETTICCC		

Figure 1. Example sample sheet for co-sequencing of libraries.

Conclusions

- Co-sequencing of single- and dual-indexed libraries saves times and increases efficiency.
- Only one additional step is required to perform co-sequencing of single- and dual-indexed libraries—specifying the i5 index sequence in the sample sheet.
- The Collibri Stranded RNA Library Prep Kit for Illumina Systems offers a rapid workflow for robust cDNA library preparation that includes single or dual indexes.

Find out more at thermofisher.com/collibriRNA

For Research Use Only. Not for use in diagnostic procedures. © 2020 Thermo Fisher Scientific Inc. All rights reserved. All trademarks are the property of Thermo Fisher Scientific and its subsidiaries unless otherwise specified. MiSeq, HiSeq, NovaSeq, iSeq, MiniSeq, and NextSeq are trademarks of Illumina, Inc. COL23904 0220