KingFisher Presto

Integration Guide

Cat. No. N17647 Rev 1.0 2016

© 2016Thermo Fisher Scientific Inc. All rights reserved.

Thermo Fisher Scientific Inc. provides this document to its customers with a product purchase to use in the
product operation. This document is copyright protected and any reproduction of the whole or any part of this
document is strictly prohibited, except with the written authorization of Thermo Fisher Scientific Inc.

The contents of this document are subject to change without notice. All technical information in this
document is for reference purposes only. System configurations and specifications in this document supersede
all previous information received by the purchaser.

Thermo Fisher Scientific Inc. makes no representations that this document is complete, accurate or error-
free and assumes no responsibility and will not be liable for any errors, omissions, damage or loss that
might result from any use of this document, even if the information in the document is followed

properly.

This document is not part of any sales contract between Thermo Fisher Scientific Inc. and a purchaser. This
document shall in no way govern or modify any Terms and Conditions of Sale, which Terms and Conditions of
Sale shall govern all conflicting information between the two documents.

Release history:

For Research Use Only. Not for use in diagnostic procedures.

Preface
Related Documentation

Introduction

This guide includes all documentation related to integrating the KingFisher Presto instrument to an
automation environment.

The following documents are included in this guide:
* KingFisher Presto Developer's Guide
* KingFisher Presto Interface Specification
» KFModule.dll Interface Specification
* ThermoUSB.dIl Interface Specification
* ThermoLAN.dIl Interface Specification

* ThermoCOM.dll Interface Specification

Related Documentation

In addition to this guide, Thermo Fisher Scientific provides the following documents for KingFisher
Presto:

* Thermo Scientific™ KingFisher™ Presto User Manual (Cat.no. N17413)
* Thermo Scientific™ Bindlt™ Software User Manual (Cat. no. N07974)

Safety and Special Notices

Make sure you follow the precautionary statements presented in this guide. The safety and other
special notices appear in boxes.

Safety and special notices include the following:

CAUTION Highlights hazards to humans, property, or the environment. Each CAUTION
notice is accompanied by an appropriate CAUTION symbol.

IMPORTANT Highlights information necessary to prevent damage to software, loss of
data, or invalid test results; or might contain information that is critical for optimal

g |y
performance of the system.

Note Highlights information of general interest.

Tip Highlights helpful information that can make a task easier.

Thermo Scientific KingFisher Presto Integration Guide i

Preface
Contacting Us

Contacting Us

For the latest information on products and services, visit our website at:

www . thermofisher.com/kingfisher

ii KingFisher Presto Integration Guide Thermo Scientific

KingFisher Presto

Developer’s Guide

Contents

1 KingFisher Presto Developer’s Guide

1.1 Contents L e e
1.2 Confidential e e
1.3 Introduction L L e e e e

2 System Description

3 Interfacing to KFModule.dll
3.1 Building the Integration Sample
3.2 Running Tests with KingFisher Presto Simulator

4 Creating and Uploading Protocols

4.1 Bindlt Protocol Editor e e
4.2 Creating "My Test Protocol”
4.3 Uploading "My Test Protocol” o e e e
4.4 Uploading and Downloading Protocols
5 Protocol Execution Methods
5.1 Step-by-Step Execution L e
5.2 Event-Based Execution e e e e e
5.3 Executing Multiple Overlapping Protocols e
5.4 Precautions for Heater Control e e
6 Error Handling
6.1 Communication Interfaces L
6.2 Communication Protocol e e

6.3 KingFisher Presto Protocol Integrity o

w N = — —

oo NN

10
11
11

13
13
15
17
22

Chapter 1

KingFisher Presto Developer’s Guide

1.1 Contents

* Introduction

+ System Description

* Interfacing to KFModule.dll

+ Creating and Uploading Protocols
* Protocol Execution Methods

 Error Handling

1.2 Confidential

This document has been prepared by Thermo Fisher Scientific Oy to be used solely for the purposes defined by Thermo
Fisher Scientific Oy. Use for other purposes is not authorized.

Please note that any and all information contained in this document is the property of Thermo Fisher Scientific Oy. This
confidential information ("Confidential Information") shall not be reproduced in whole part or disclosed to any third party
without the prior written approval of Thermo Fisher Scientific Oy. The receiving party shall ensure that it's employees,
officers, representatives and agents shall not disclose to third parties any Confidential Information.

Upon written request from Thermo Fisher Scientific Oy, the receiving party shall promptly return all Confidential Information
or destroy all Confidential Information.

2 KingFisher Presto Developer’s Guide

1.3 Introduction

This document is intended for software designers writing computer programs for controlling the instrument. It contains
information necessary to know in order to be able to write such a program. It is assumed that the reader of this document
is familiar with the function of the instrument.

Thermo Fisher Scientific SPA Ratastie 2 FIN-01621 Vantaa, Finland www.thermo.com

Chapter 2

System Description

Figure 3-1 shows the basic architecture of a system using the KingFisher instrument. The system is constructed into three
layers: Application layer, Communication layer and Hardware layer. Components using the layers are Automation System, Bindit
Software and KingFisher Presto Instrument.

System Components

Automation System refers to a process management system (PMS) software module provided by an automation integrator
and running on a computer with a MS Windows operating system.

Bindlt Software is used to create KingFisher Presto protocols. It can also upload and download protocols to and from the
KingFisher Presto instrument using KFModule.dll, but it is not part of the automation system and it is not used to run the
protocols in the automation system.

KingFisher Presto instrument provides communication interfaces for transferring and executing KingFisher Presto protocols
created in Bindlt software.

Application Services Layer

KFModule.dll dynamic link library provides easy access to the KingFisher Presto instrument interface through communication
libraries. The physical connection between a computer and the instrument can be USB, RS232 or LAN.

Communication Services Layer

This is a middle layer between the KingFisher Presto instrument and the KFModule.dll and can be ignored by the Au-
tomation System. Depending on a physical connection, one of the communication libraries will be used: ThermoUSB.dII,
ThermoCOM.dIl or ThermoLAN.dII.

Hardware Interfaces

The KingFisher Presto instrument has three alternate communication ports for connecting to a computer: RS232, USB and
LAN. All connections can be accessed either through higher level service layers or directly through physical ports.

System Description

e Automation System N\ (Bindlt PC Software E

Running a process
management system
software.

For editingand -
transferring —
protocols.

& = A)

A

Application services layer (API)

(KFModule.dll)

Communication services layer

[CThermuLAN.dll) CThermoCOM.d]D (ThermoUSB.d]l)j
Y

Hardware interfaces

Direct Instrument Interfaces (for non-Windows platforms)

KingFisher Presto :

Figure 2.1: System description

&

Thermo Fisher Scientific SPA Ratastie 2 FIN-01621 Vantaa, Finland www.thermo.com

Related Documents

Bindlt User Manual: Thermo Scientific Bindlt Software for KingFisher Instruments User Manual (Cat. No. NO7974)
KingFisher Presto Developer's Guide

KingFisher Presto Interface Specification

KFModule.dll Interface Specification

ThermoUSB.dIl Interface Specification

ThermoLAN.dIl Interface Specification

ThermoCOM.dIl Interface Specification

Thermo Fisher Scientific SPA Ratastie 2 FIN-01621 Vantaa, Finland www.thermo.com

System Description

Thermo Fisher Scientific SPA Ratastie 2 FIN-01621 Vantaa, Finland www.thermo.com

Chapter 3

Interfacing to KFModule.dl

This chapter introduces an integration sample (C#) which demonstrates how to use the functions of the KFModule.dlI.

g Visual Studio

Note. The sample solution is created with Microsoft Visual Studio 2012 and provided as is, it has not been fully tested for
stability and may malfunction when used in unexpected way.

For detailed information of the KFModule.dll exported functions and instrument commands, see: KFModule.dll
Interface Specification and KingFisher Presto Interface Specification.

3.1 Building the Integration Sample

Look for a folder named IntegrationSample provided together with this document. From that folder, open the Sample.sin with
Microsoft Visual Studio 2012 or later.

Select Debug configuration and build the solution. You should get an output listing similar to one below.
1> Build started: Project: KFModuleWrapperLibrary, Configuration: Debug Any CPU ————--—

1> KFModuleWrapperLibrary
-> C:\temp\IntegrationSample\KFModuleWrapperLibrary\bin\Debug\KFModuleWrapperLibrary.dll

2>——==== Build started: Project: Sample, Configuration: Debug Any CPU ————-—-—
2> Sample -> C:\temp\IntegrationSample\Sample\bin\Debug\Sample.dll

2> 1 file(s) copied.

2> 1 file(s) copied.

2> 1 file(s) copied.

========== Build: 2 succeeded, 0 failed, 0 up-to-date, 0 skipped ==========

Note the project named KFModuleWrapperLibrary. It provides an interface to the KFModule.dll and can be used as a starting
point when designing your own interface library.

The project Sample contains test methods demonstrating how to communicate with a KingFisher Presto Simulator. The
difference between connecting to the simulator or to a real instrument is very small. You just choose to call a function
KFModule_OpenSimulator() instead of KFModule_Open(). The simulator is included in the IntegrationSample.

8 Interfacing to KFModule.dll

3.2 Running Tests with KingFisher Presto Simulator

Open Test Explorer from the Visual Studio and you should see these four unit tests:

1. TEST1_SimulatorStarted
2. TEST2_UploadProtocol
3. TEST3_RunProtocol

4. TEST4 _RemoveProtocol

The KingFisher Presto simulator KFPresto.exe needs to be started before running the tests. See also StartSimulator.bat in the
IntegrationSample package. It can be used to start the simulator with logging enabled. Then all communication messages
between IntegrationSample and simulator are written to a file named kfm.log.

After simulator is started, run the tests in the given order and you should succeed.

Test Explorer nedhlA 2 5 .

O [2 - Search P~
:i_:‘u Run.. = | Playlist - All Tests =
p
@) TESTL SimulatorStarted 1zec
(] TESTZ UploadProtocol G zec
@ TEST3 RunProtocol 1 min
(V] TEST4 _RemoveProtocol 2 zec
Summary

Last Test Run Passed (Total Run Time 0:01:27)
@ 4 Tests Passed

Test Explorer | Solution Bx.. Feam Expl.. | Class View

Figure 3.1: Passed tests

Thermo Fisher Scientific SPA Ratastie 2 FIN-01621 Vantaa, Finland www.thermo.com

Chapter 4

Creating and Uploading Protocols

This chapter contains instructions how to create KingFisher Presto protocols and upload them into the instrument using
Bindlt PC software or KFModule.dll APIl. An example protocol named "My Test Protocol" is introduced. The example
protocol is addressed later on in this document, when it is explained how to execute uploaded protocols in the KingFisher
Presto instrument.

My Test Protocol.bdz - BindIt 4.0

= YHome HH Layout & Protocol [F] Reports

®v | On Howns i
S‘;s’gg [esuse Q b

[Lock |
Protoc - I - 5 [(@) &) (]| Protocol Details

ﬁ My Test Protocol (% Calculate Duration Protocol:
Mg Tip1 General

) Instrument type: KingFisher Presto
....... @ Mlxl
b &% Plate: Plate 1 Kit name: Test kit
"""" @ Mix2 Protocol description:
S5 Plate: Plate 2 Simple demaonstration. -

Mot connected n mika.tarvainen

Figure 4.1: Bindlt protocol editor

10 Creating and Uploading Protocols

4.1 Bindlt Protocol Editor

KingFisher Presto protocols area created with Bindlt PC software. It can also upload and dowload the protocols to and from
the KingFisher Presto instrument but it is not part of the Automation System. It can be used to run protocols "manually”,
meaning that a human person needs to handle all plate load/remove events.

4.2 Creating "My Test Protocol”

Here are listed the steps needed to create the "My Test Protocol" example protocol. The outcome is a protocol structure
with few plates and steps as shown in figure 5.2. Detailed instructions of how to create protocols can be found in the
Thermo Scientific Bindit Software for KingFisher Instruments User Manual.

| Protocol Steps | - | - B (@] e 5

Figure 4.2: My Test Protocol

1. Open Bindlt and select "Home" tab.

2. Press button "New" from the "Protocol" button group.

3. Select KingFisher Presto from the opened list.

4. Press button "New" from the "Plate" button group in "Layout" tab.
5. Select "96 DW plate"

6. Type "Tip Comb" to the "Plate name:" text box.

7. Add a dummy reagent by typing "None" to the reagent name row with guide text "Type a name to add new...". Default
50 pl volume is ok.

8. Create two more plates in a similar way, but name them "Plate 1" and "Plate 2".

9. Select "Protocol" tab.

Thermo Fisher Scientific SPA Ratastie 2 FIN-01621 Vantaa, Finland www.thermo.com

4.3 Uploading "My Test Protocol" 11

10. Select "Tip1" from the "Protocol Steps" list and then "96 DW tip comb" from the "Tip:" dropdown list on the right on
"General" tab.

11. Select "Pick-Up" from the "Protocol Steps" list and then "Tip Comb" from the "Plate:" dropdown list on the right on
"Details" tab.

12. Select "Leave" from the "Protocol Steps" list and then "Tip Comb" from the "Plate:" dropdown list on the right on
"Details" tab.

13. Select "Tip1" from the "Protocol Steps" list.

14. Press button "Mix" from the "Steps" button group in "Protocol" tab to create a mix step. Default parameters are ok.
15. Select "Plate" under the "Mix1" in the "Protocol Steps" list.

16. Select "Plate 1" from the from the "Plate:" dropdown list on the right on "Details" tab.

17. Create another Mix step in a similar way, but Select "Plate 2" for it.

18. Create a Dry step in a similar way and select "Plate 2" for it.

19. Save the protocol as "My Test Protocol" by pressing the save symbol on top and left of the window.

20. Verify that you created identical step list as in figure 5.2

4.3 Uploading "My Test Protocol”

The easiest way to upload and test a protocol with a KingFisher Presto instrument is by connecting the instrument to Bindlt
and pressing a green Start symbol. However, the protocol is not saved permanently to the memory of the instrument and
is available only during the execution of the protocol in Bindlt software.

The green Start symbol can be found from the "Start" group, which is visible in all tabs and enabled after a protocol is
created and saved. See quick guide steps below.

—_

. Open Bindlt.

N

. Power on a KingFisher Presto instrument and attach it to the computer running the Bindlt with USB cable.
. Connect Bindlt to the instrument, see Thermo Scientific Bindlt Software for KingFisher Instruments User Manual.

3
4. Open "My TestProtocol".

(&)

. Press Start symbol from the "Start" group.

4.4 Uploading and Downloading Protocols

Connect to a KingFisher Presto instrument and open protocol transfer view in Bindlt Software by pressing the "Transfer"
symbol in the "Instrument” group of the "Home" tab. In this view it is possible to upload, download and remove protocols
to/from the instrument. Note that the "Instrument" group is enabled only after the KingFisher Presto instrument is connected
to the Bindlt Software. Notice the button "Connect" or "Disconnect" in the status bar in the bottom of the window. See
Thermo Scientific Bindlt Software for KingFisher Instuments User Manual for more details about connecting to the
instrument.

Protocols can be also saved to the file system folders of the computer running the Bindlt Software. The file format of these
files is "Bindlt export data file" and the file extension is ".bdz". Bindlt protocols can be uploaded and downloaded to/from the
KingFisher Presto instrument through KFModule.dll API functions KFModule_UploadProtocol() and KFModule_Download-
Protocol. See KFModule.dll Interface Specification for more details.

Thermo Fisher Scientific SPA Ratastie 2 FIN-01621 Vantaa, Finland www.thermo.com

12

Creating and Uploading Protocols

Thermo Fisher Scientific SPA Ratastie 2 FIN-01621 Vantaa, Finland www.thermo.com

Chapter 5

Protocol Execution Methods

The automation interface offers two distinct ways to execute protocols on the KingFisher Presto instrument. The integrator
can decide which option suits his/her needs the best. The first Step-by-step approach leaves the total control of the process to
the automation system. The instrument control can be seen as a master-slave relationship between automation system and
instrument. Alternatively, KingFisher Presto protocols can be executed using an event-based approach where the automation
system has to react to events sent by the instrument. KingFisher Presto supports also overlapped multi-protocol executions
as an application of Step-by-step method.

A Caution. The validities of the KingFisher Presto protocols provided by ThermoFisher Scientific are verified using
Event-Based Execution method. It is up to the integrator to ensure that the protocols are executed correctly when using
Step-by-Step Execution method or when Executing Multiple Overlapping Protocols.

5.1 Step-by-Step Execution

The automation can be build to run sequential step execution scripts where the turntable rotation commands are placed
between the steps. The system does not need to react to the events coming from the instrument, it can poll the status of
the execution instead.

KingFisher Presto protocols are created with Bindlt protocol editor and uploaded to the instrument through the communi-
cation interface of the instrument. Protocol steps are executed by addressing them by name. As said before, turntable
rotation is handled by the automation or the process management system. Understanding of the content of the protocol is
not required for an integrator. Only the order of the steps needs to be understood. The execution of the "My Test Protocol”
example protocol is descibed below. It assumes that the protocol is already uploaded, see Creating and Uploading Proto-
cols.

1 Note. The example demonstrates how the KingFisher Presto instrument replies to the commands and how the
automation system needs to poll the instrument status before sending new commands. Not all of these repeatedly needed
commands and responses are shown in order to keep the example readable. Furthermore, all event messages are stripped
off. See KingFisher Presto Interface Specification for more details.

1. Rotate turntable to a startup position, meaning that nest 1 will be in the processing position. If the command can
be executed, then the KingFisher Presto instrument replies immediately with "ok" response and starts rotating the
turntable.
<Cmd name="Rotate" nest="1" position="1" />
<Res name="Rotate" ok="true" />

14

Protocol Execution Methods

2.

10.

Read the status of the instrument until the reply from the instrument is "ldle" instead of "Busy*“.
<Cmd name="GetStatus" />

<Res name="GetStatus" ok="true"><Status>Busy</Status></Res>

<Cmd name="GetStatus" />

<Res name="GetStatus" ok="true"><Status>Busy</Status></Res>

<Cmd name="GetStatus" />
<Res name="GetStatus"ok="true"><Status>ldle</Status></Res>

Load Tip Comb plate to the nest 2, which is in the load position, and rotate it to the processing position. Poll again
for the instrument to return to the "Idle" state.

<Cmd name="Rotate" nest="2" position="1" />

<Res name="Rotate" ok="true" />

<Cmd name="GetStatus" />

<Res name="GetStatus" ok="true"><Status>ldle</Status></Res>

Start the "Pick-Up" step. Again, wait for the "ldle" status after the instrument has first replied with "ok" to the start
command.

<Cmd name="StartProtocol" protocol="My Test Protocol" tip="Tip1" step="Pick-Up" />

<Res name="StartProtocol" ok="true" />

<Cmd name="GetStatus" />

<Res name="GetStatus"ok="true"><Status>Busy</Status></Res>

<Cmd name="GetStatus" />

<Res name="GetStatus" ok="true"><Status>Busy</Status></Res>

<Cmd name="GetStatus" />
<Res name="GetStatus" ok="true"><Status>ldle</Status></Res>

Place "Plate 1" to the nest 1, which is now in the load position and rotate it to the processing position.
Note. The plate could have been loaded also during the time when the instrument was running the "Pick-Up" step.
<Cmd name="Rotate" nest="1" position="1" />

Unload "Tip Comb" plate from the nest 2 in the load/unload position of the instrument and start the first mix step
"Mix1" for the "Plate 1", which is now in the processing position.
<Cmd name="StartProtocol" protocol="My Test Protocol" tip="Tip1" step="Mix1" />

Place "Plate 2" to the nest 2, which is now in the load position and rotate it to the processing position.
<Cmd name="Rotate" nest="2" position="1" />

Unload "Plate 1" from the nest 1 and start step "Mix2" for the "Plate 2" in the processing position.
<Cmd name="StartProtocol" protocol="My Test Protocol" tip="Tip1" step="Mix2" />

Start step "Dry1" for the "Plate 2" in the processing position.
<Cmd name="StartProtocol" protocol="My Test Protocol" tip="Tip1" step="Dry1" />

Load Tip Comb plate to the nest 1, which is in the load position, and rotate it to the processing position. "Plate 2" will
be rotated to the load/unload position.

Thermo Fisher Scientific SPA Ratastie 2 FIN-01621 Vantaa, Finland www.thermo.com

5.2 Event-Based Execution 15

<Cmd name="Rotate" nest="1" position="1" />

11. Unload Plate 2 from the load/unload position of the instrument and start step "Leave" to drop off the tips to the "Tip
Comb" plate.
<Cmd name="StartProtocol" protocol="My Test Protocol" tip="Tip1" step="Leave" />

12. Rotate the turntable one more time to get the "Tip Comb" plate to the load/unload position. Note. This specific com-
mand example addresses the position 2, which is the load/unload position. Command "rotate nest 2 to the position
1" would have the same effect.
<Cmd name="Rotate" nest="1" position="2" />

13. Unload Tip Comb plate from the load/unload position after the instrument has finished the final rotation.
<Cmd name="GetStatus" />
<Res name="GetStatus" ok="true"><Status>ldle</Status></Res>

A Caution. Minimize delay times between steps.

Tips/magnets of the KingFisher Presto are always lifted up from a microwell plate and thus from the liquids within the plate
when a step execution is finished. It is very important to minimize the delay before the next step so that the tips do not dry
between the steps. Otherwise some applications may suffer. In practice, all the plates must be prepared beforehand. It is
also recommended that the plate changes are designed in the way that a next plate is loaded to the load position during
the time when a previous plate is being processed.

5.2 Event-Based Execution

KingFisher Presto protocols can be executed in a mode where the instrument handles turntable rotation by itself and
sends events to the automation system whenever it requires attention. See example below demonstrating messaging
between the instrument and an automation system running the "My Test Protocol" execution in event mode. The example
is explained in detail after the listing. Note that not all events are listed in order to keep the listing readable. These events
include StepStarted ProtocolTimeLeft and Temperature. See KingFisher Presto Interface Specification for more details about
events, commands and responses.

<Cmd name="StartProtocol" protocol="My Test Protocol" /> (1)
<Res name="StartProtocol" ok="true" />

<Evt name="LoadPlate" plate="Tip Comb" optional="false" /> (2)
<Cmd name="Acknowledge" />
<Res name="Acknowledge" ok="true" />

<Evt name="LoadPlate" plate="Plate 1" optional="true" /> (3)
<Evt name="LoadPlate" plate="Plate 1" optional="false" />

<Cmd name="Acknowledge" />

<Res name="Acknowledge" ok="true" />

<Evt name="ChangePlate" optional="true" > (4)
<Evt name="RemovePlate" plate="Tip Comb" optional="true" />
<Evt name="LoadPlate" plate="Plate 2" optional="true" />

</Evt>

<Cmd name="Acknowledge" />

<Res name="Acknowledge" ok="true" />

Thermo Fisher Scientific SPA Ratastie 2 FIN-01621 Vantaa, Finland www.thermo.com

16

Protocol Execution Methods

<Evt name="ChangePlate" optional="true" >
<Evt name="RemovePlate" plate="Plate 1" optional="true" />
<Evt name="LoadPlate" plate="Tip Comb" optional="true" />
</Evt>
<Cmd name="Acknowledge" />
<Res name="Acknowledge" ok="true" />

<Evt name="RemovePlate" plate="Plate 2" optional="true" />
<Cmd name="Acknowledge" />
<Res name="Acknowledge" ok="true" />

<Evt name="RemovePlate" plate="Tip Comb" optional="false" />
<Cmd name="Acknowledge" />

<Res name="Acknowledge" ok="true" />

<Evt name="Ready" />

(®)

. Protocol is started by sending command "StartProtocol" to which the instrument immediately replies.

The first "LoadPlate" event is sent by the instrument when it is requesting "Tip Comb" plate to be inserted to the
load position of the turntable. Value "false" of the attribute "optional” means that the instrument does not continue
its operation until the automation system acknowledges the event. After a command "Acknowledge" is received and
replied, the instrument rotates the turntable and starts processing the plate, which in this example means picking up
the tip comb.

The second "LoadPlate" event is sent immediately after the processing of the tip comb is started. Attribute "optional”
is now "true" indicating that the "Plate 1" can be placed to the load position but it is not obligatory. This event is
ignored by the automation system in this example and so the instrument continues processing. After finished with
the "Tip Comb" plate, the instrument sends another event requiring the "Plate 1" to be loaded. Attribute "optional” is
now "false" and the plate needs to be placed to the load position. The instrument continues after it receives command
"Acknowledge" and sends a reply to it. Again, the turntable is rotated and processing of the "Plate 1" starts.

4. There are plates in both nests of the turntable now. Processing of the "Plate 1" is under progress and the next
plate needed is "Plate 2". Instrument sends a "ChangePlate" event to the automation system, telling that now it is a
good time to remove "Tip Comb" from the load position and replace it with "Plate 2". Automation system does that
and acknowledges. Instrument replies and sends no further events of this particular need, but rotates the turntable
automatically after processing of the "Plate 1" is finished and starts processing "Plate 2" without any delay.

See previous. Event "ChangePlate" is sent in order to remove "Plate 1" and load "Tip Comb".

At this phase of the protocol execution the instrument has rotated the turntable again and is starting to drop off the
tip comp to the "Tip Comb" plate. Before that, it sends a "RemovePlate" event suggesting that the "Plate 2" could be
removed. Note that attribute "optional" is "true" meaning that it is just a suggestion, automation system could also
remove the plate later. In this example the plate is removed by this time and command "Acknowledge" is sent and
replied.

7. The instrument is finished with the "Tip Comb" plate and is now requesting it to be removed. Event "RemovePlate" is
sent with attribute "optional” value "false". Automation system removes the last plate and sends a final "Acknowledge"
command. Instrument replies.

. Event "Ready" is sent by the instrument when the protocol execution is completed. This event needs not to be
acknowledged.

Thermo Fisher Scientific SPA Ratastie 2 FIN-01621 Vantaa, Finland www.thermo.com

5.3 Executing Multiple Overlapping Protocols 17

5.3 Executing Multiple Overlapping Protocols

KingFisher Presto supports overlapped multi-protocol executions.

A Caution. If a protocol contains Mix steps with pre-heating option enabled, then there is some differences in heater
control between straightforward protocol execution and overlapped multi-protocol executions. See Precautions for Heater
Control for more details.

See figure 6.1 below for an example protocol created in the Bindlt protocol editor. The name of the protocol is "Protocol A"
and it uses two microplates: one for a tip comb and another for mixing. Actual applications would never use just one plate
for processing, but this way the following discussion is not too exhaustive.

Protocol Steps | - || - B (@ el |||

) s Plate: Plate X

e d5 Plate: Plate X

5 Plate: Plate X

Ll Plate: Plate X

Figure 5.1: Protocol A

Probably the most likely scenario for multiprotocol execution is to run the protocols sequentially. See Figure 6.2 for exam-
ple. However, some automation system integrators may find it useful that Step-by-Step Execution enables multi-protocol
execution in an overlapped way, meaning that an automating system can execute several instances of a same protocol or
different protocols by simply switching between the step lists. See Figure 6.3 for example.

Thermo Fisher Scientific SPA Ratastie 2 FIN-01621 Vantaa, Finland www.thermo.com

18 Protocol Execution Methods

It should be noted that typically every separate execution uses different tips and plates than the other executions, meaning
that the context switch between executions requires "Pick-Up" and "Leave" steps around the actual step to be executed.
Conseptually, this means that the context switch is actually a plastics switch where plastics are microwell plates and tip
combs for the magnets. Need for a plastics switch is escpecially clear in Figure 6.3 in comparision with straighforward
repeated execution as in the Figure 6.2 below.

‘ Protocol A: Execution #1 ‘ ‘ Protocol A: Execution #2 ‘

Figure 6.2: Consecutive executions of Protocol A

Figure 6.2 above and the command listing on the next page illustrate how a Protocol A is executed twice using Step-by-step
execution method. The example protocol executions contain tips in a "Tip Comb" plates 1 and 2 and the actual plates to
be processed are named as "Plate 1" and "Plate 2".

Note that the execution status polling and command reply messages are not listed in order to keep the example more
readable. See Step-by-Step Execution for more details on those.

—_

. <Cmd name="Rotate" nest="1" position="2" />

2. Place "Tip Comb 1" plate to the turntable.

3. <Cmd name="Rotate" nest="2" position="2" />

4. Place "Plate 1" to the turntable.

5. <Cmd name="StartProtocol" protocol="Protocol A" tip="Tip1" step="Pick-Up" />
6. <Cmd name="Rotate" nest="2" position="1" />

7. <Cmd name="StartProtocol" protocol="Protocol A" tip="Tip1" step="Mix1" />

8. <Cmd name="StartProtocol" protocol="Protocol A" tip="Tip1" step="Mix2" />

9. <Cmd name="StartProtocol" protocol="Protocol A" tip="Tip1" step="Mix3" />

Thermo Fisher Scientific SPA Ratastie 2 FIN-01621 Vantaa, Finland www.thermo.com

5.3 Executing Multiple Overlapping Protocols

19

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

<Cmd name="StartProtocol" protocol="Protocol A" tip="Tip1" step="Mix4" />

<Cmd name="StartProtocol" protocol="Protocol A" tip="Tip1" step="Mix5" />

<Cmd name="Rotate" nest="2" position="2" />

<Cmd name="StartProtocol" protocol="Protocol A" tip="Tip1" step="Leave" />

Remove "Plate 1" from the turntable.

<Cmd name="Rotate" nest="1" position="2" />

Remove "Tip Comb 1" plate from the turntable.

Place "Tip Comb 2" plate to the turntable.

<Cmd name="Rotate" nest="2" position="2" />

Place "Plate 2" to the turntable.

<Cmd name="StartProtocol" protocol="Protocol A" tip="Tip1" step="Pick-Up" />

<Cmd name="Rotate" nest="2" position="1" />

<Cmd name="StartProtocol" protocol="Protocol A" tip="Tip1" step="Mix1" />

<Cmd name="StartProtocol" protocol="Protocol A" tip="Tip1" step="Mix2" />

<Cmd name="StartProtocol" protocol="Protocol A" tip="Tip1" step="Mix3" />

<Cmd name="StartProtocol" protocol="Protocol A" tip="Tip1" step="Mix4" />

<Cmd name="StartProtocol" protocol="Protocol A" tip="Tip1" step="Mix5" />

<Cmd name="Rotate" nest="2" position="2" />

<Cmd name="StartProtocol" protocol="Protocol A" tip="Tip1" step="Leave" />

Remove "Plate 2" from the turntable.

<Cmd name="Rotate" nest="1" position="2" />

Remove "Tip Comb 2" plate from the turntable.

Thermo Fisher Scientific SPA Ratastie 2 FIN-01621 Vantaa, Finland www.thermo.com

20 Protocol Execution Methods

‘ Protocol A: Execution #1 ‘ ‘ Protocol A: Execution #2 ‘

Figure 6.3: Context switch between two executions of Protocol A

Figure 6.3 above and the command listing below demonstrates switching of plastics when two instances or executions of a
Protocol A are executed in an overlapped fashion.

The example protocol executions contain tips in a "Tip Comb" plates 1 and 2 and the actual plates to be processed are
named as "Plate 1" and "Plate 2". Note that the execution status polling and command reply messages are not listed in
order to keep the example more readable. See Step-by-Step Execution for more details on those.

1. <Cmd name="Rotate" nest="1" position="2" />

N

. Place "Tip Comb 1" plate to the turntable.

3. <Cmd name="Rotate" nest="2" position="2" />

4. Place "Plate 1" to the turntable.

5. <Cmd name="StartProtocol" protocol="Protocol A" tip="Tip1" step="Pick-Up" />

6. <Cmd name="Rotate" nest="2" position="1" />

7. <Cmd name="StartProtocol" protocol="Protocol A" tip="Tip1" step="Mix1" />

8. <Cmd name="StartProtocol" protocol="Protocol A" tip="Tip1" step="Mix2" />

9. <Cmd name="StartProtocol" protocol="Protocol A" tip="Tip1" step="Mix3" />
10. <Cmd name="StartProtocol" protocol="Protocol A" tip="Tip1" step="Mix4" />
11. <Cmd name="Rotate" nest="1" position="1" />

12. <Cmd name="StartProtocol" protocol="Protocol A" tip="Tip1" step="Leave" />

Thermo Fisher Scientific SPA Ratastie 2 FIN-01621 Vantaa, Finland www.thermo.com

5.3 Executing Multiple Overlapping Protocols

21

13

14,
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
41.
42.
43.
44,
45.
46.
47.
48.

. Remove "Plate 1" from the turntable.

Place "Tip Comb 2" plate to the turntable.

<Cmd name="Rotate" nest="2" position="1" />

<Cmd name="StartProtocol" protocol="Protocol A" tip="Tip1" step="Pick-Up" />
Remove "Tip Comb 1" from to the turntable.

Place "Plate 2" to the turntable.

<Cmd name="Rotate" nest="1" position="1" />

<Cmd name="StartProtocol" protocol="Protocol A" tip="Tip1" step="Mix1" />
<Cmd name="StartProtocol" protocol="Protocol A" tip="Tip1" step="Mix2" />
<Cmd name="StartProtocol" protocol="Protocol A" tip="Tip1" step="Mix3" />
<Cmd name="StartProtocol" protocol="Protocol A" tip="Tip1" step="Mix4" />
<Cmd name="Rotate" nest="2" position="1" />

<Cmd name="StartProtocol" protocol="Protocol A" tip="Tip1" step="Leave" />
Remove "Plate 2" from the turntable.

Place "Tip Comb 1" plate to the turntable.

<Cmd name="Rotate" nest="1" position="1" />

<Cmd name="StartProtocol" protocol="Protocol A" tip="Tip1" step="Pick-Up" />
Remove "Tip Comb 2" from to the turntable.

Place "Plate 1" to the turntable.

<Cmd name="Rotate" nest="2" position="1" />

<Cmd name="StartProtocol" protocol="Protocol A" tip="Tip1" step="Mix5" />
<Cmd name="Rotate" nest="1" position="1" />

<Cmd name="StartProtocol" protocol="Protocol A" tip="Tip1" step="Leave" />
Remove "Plate 1" from the turntable.

Place "Tip Comb 2" plate to the turntable.

<Cmd name="Rotate" nest="2" position="1" />

<Cmd name="StartProtocol" protocol="Protocol A" tip="Tip1" step="Pick-Up" />
Remove "Tip Comb 1" from to the turntable.

Place "Plate 2" to the turntable.

<Cmd name="Rotate" nest="1" position="1" />

<Cmd name="StartProtocol" protocol="Protocol A" tip="Tip1" step="Mix5" />
<Cmd name="Rotate" nest="2" position="1" />

<Cmd name="StartProtocol" protocol="Protocol A" tip="Tip1" step="Leave" />
Remove "Plate 2" from the turntable.

<Cmd name="Rotate" nest="2" position="2" />

Remove "Tip Comb 2" from to the turntable.

Thermo Fisher Scientific SPA Ratastie 2 FIN-01621 Vantaa, Finland www.thermo.com

22 Protocol Execution Methods

5.4 Precautions for Heater Control

Mix steps in KingFisher Presto protocols may have heating option enabled, meaning that a heating block is heated and
lifted up against a plate during mixing. Furthermore, a preheat option can be enabled to ensure that the heating block
will reach the target temperature just before the actual step where the heating is required. The heating block is positioned
some distance below the plate during preheating.

There is some differences in heater control between straightforward protocol execution and overlapped multi-protocol ex-
ecutions when the preheat option is enabled. See Figure 6.4 for an example where pre-heat is enabled for the step Mix5.
When the protocol is executed using Event-Based Execution method, then the KingFisher Presto instrument calculates the
moment when the preheating needs to be started and then turns the heater on automatically. The moment arises in our
example during step Mix4.

‘ Protocol A: Execution #1 |

o D

Mix3

Mix4

.

Leave

-0

Figure 6.4: Protocol A with preheat enabled in Mix5

If Step-by-Step Execution method is used or when Executing Multiple Overlapping Protocols, then the KingFisherPresto
follows the same automatic preheat control logic as when using Event-Based Execution method but with some restrictions:

1. If preheat is on and the step to be executed is not from the same protocol as previous executed step, then the preheat
is turned off unless:

» Step to be executed is "Pick-Up" or "Leave".

2. If preheat is on and the step to be executed is from the same protocol as previous executed step then the preheat is
turned off unless:
» Step to be executed is "Pick-Up" or "Leave".
» Step to be executed is same as previous executed step.
» Step to be executed is next in the protocol after the previous executed step.

Thermo Fisher Scientific SPA Ratastie 2 FIN-01621 Vantaa, Finland www.thermo.com

5.4 Precautions for Heater Control 23

3. Preheat is turned off automatically if a new step execution is not started within 10 minutes from the end of the
previous step execution.

4. Preheat is never turned on during "Pick-Up" or "Leave" steps when Step-by-Step Execution method is used or when
Executing Multiple Overlapping Protocols. This may cause a small delay to the preheating when compared to Event-
Based Execution method.

5. If the step to be executed is the first step in a protocol, then the heater will be turned off at the beginning of the step
execution.

6. If the step to be executed is the last step in a protocol and the step to be executed is from the same protocol as
previous executed step, then the heater will be turned off at the end of the step execution.

1 Note. If preheat is turned off, because of the above mentioned restrictions, then a warning event is sent to the
automation system. Same warning is also included to the reply message of instrument status query command as long as
the step is being executed.

A Caution. If a Mix step with heating and preheating contains long End of step actions e.q. Postmix or/and Collect beads
and is switched between multiple execution instances, then the preheating is compromized. That is because the heater is
always turned off after Mixing (e.q. before Postmix) and the heating block will be cooled down during the Postmix.

Thermo Fisher Scientific SPA Ratastie 2 FIN-01621 Vantaa, Finland www.thermo.com

24

Protocol Execution Methods

Thermo Fisher Scientific SPA Ratastie 2 FIN-01621 Vantaa, Finland www.thermo.com

Chapter 6

Error Handling

There are several different error handling mechanisms in the communication interfaces of the KingFisher Presto instrument.
Some of them are implemented in DLL level while some others are features of the instrument itself. See related interface
specifications for detailed information:

- KFModule.dll Interface Specification

- KingFisher Presto Interface Specification

6.1 Communication Interfaces

Low level error handling is based on the mechanisms of the underlaying communication protocol, for example on guar-
anteed data integrity of the USB protocol. Some connection errors can be captured in DLL level, whereas some others
require polling of the instrument status.

KFModule.dll is able to detect when USB connection is lost. Function KFModule_AttachEvent() can be used to subscribe
KFMODULE_ERROR events. If the connection is lost, then event KFM_ERROR_DISCONNECTED will be sent.

There is no detection for failed connection when using RS232 interface. Then the user application e.q. an automation
system needs to poll the instrument status with GetStatus command in order to be sure that the instrument is still online.

It is recommended to use the above mentioned GetStatus method also when using LAN interface, because the KFModule.dll
can only detect a failed connection after some timeout when attemping to send commands to the instrument. Meaning that
any spontaneous events or some replies are lost if the physical connection is disconnected.

6.2 Communication Protocol

KFModule.dll function calls all return error codes if they do not succeed.

Responses to instrument commands use "ok" attribute for replying if a command is accepted or rejected. Responses may
also contain error and/or warning codes.

Reply to GetStatus instrument status query command may indicate "In error" status and contain error and/or warning codes.
The controlling automation system needs to send an error acknowledge command to the instrument in order to get the
instrument out of the error state.

Failed protocol and step executions and other spontaneous errors are reported with error events which may require that
the controlling system sends an error acknowledge command before the instrument continues its operation.

Command set includes Stop and Abort commands for stopping and disconnecting the instrument. Abort command can be
generated also from the physical maintenance interface by pressing the red stop symbol.

26 Error Handling

6.3 KingFisher Presto Protocol Integrity

Protocol upload command of the KingFisher Presto includes a 32-bit cyclic redundancy check (CRC) error-detecting code
from the protocol data to be transferred. The instrument verifies that the CRC matches to the CRC of the received data.
The CRC value is saved to the internal memory of the instrument together with the protocol data. The KFModule.dll API
function KFModule_UploadProtocol() calculates CRC codes automatically.

Furthermore, the instrument calculates CRC from a saved protocol every time a protocol or a step from a protocol is about
to be started. An error is generated if the calculated CRC does not match to the CRC value that was saved when the
protocol in question was uploaded to the instrument.

Thermo Fisher Scientific SPA Ratastie 2 FIN-01621 Vantaa, Finland www.thermo.com

KingFisher Presto

Interface Specification

Contents

1 KingFisher Presto Interface Specification

1.1
1.2
1.3

2 Hardware Requirements

2.1

2.2

2.3

3 Communication Protocol

3.1
3.2
3.3
3.4
3.5
3.6

3.7
3.8
3.9

Contents L e e e
Confidential e e e e
Introduction L L e e

N = = =

RS232 . .
211 AbOrt . . e
USB . o
221 Sendingcommands totheinstrument L L
2.2.2 Receiving responses from the instrumento oL
2.23 AbOrt ..o e e
224 Flow Control L e
LAN
231 ADOrt .. e

OB PADMAEOWWWW

General
Character Encoding o e
Maximum Line Width e
XML Format o e e
Attributesand Tag Data
Root Tag Types o e e e
3.6.1 <Cmd>-Commands e e e e
3.6.2 <Res>-RespoNnSes e e e e e e
3.6.3 <Evi>-Events e
Error Handling e e e
Error Codes e e e e e
Warning Codes e e e e e

—
O O OW 000 0NN N NN

—_

4 Commands and Responses 11

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12
4.13
4.14
4.15

Y oo 12
Acknowledge L e e e e e 14
CONNECE o e e e e e 15
Disconnect. e e e e 17
DownloadProtocol e e e e e e e 18
ErrorAcknowledge e e 19
GetProtocolDuration e e e e e e 20
GetProtocolTimeLeft e e e 22
GetStatus e e e e e e e 23
ListProtocols e e e e 24
RemoveProtocol e e e e e 25
Rotate e e e e e 26
SetTemperatureReporting e 27
StartProtocol L e e e 28
] (o] o 29

ii CONTENTS

416 UploadProtocol e 30
5 Events 31
5.1 Aborted e e e 32
5.2 ChangeMagnets e 33
5.3 ChangePlate e 34
5.4 EITOr . . o o e e e e e 35
55 LoadPlate e e e 36
5.6 Pause e e 37
5.7 ProtocolTimeLeft e e e 38
5.8 Ready e 39
5.9 RemovePlate e 40
5,10 StepStarted e e e e e 41
511 Temperature L e 42
6 Appendix - XML path syntax 43

Thermo Fisher Scientific SPA Ratastie 2 FIN-01621 Vantaa, Finland www.thermo.com

Chapter 1

KingFisher Presto Interface Specification

1.1 Contents

* Introduction

» Hardware Requirements

« Communication Protocol

+ Commands and Responses

* Events

1.2 Confidential

This document has been prepared by Thermo Fisher Scientific Oy to be used solely for the purposes defined by Thermo
Fisher Scientific Oy. Use for other purposes is not authorized.

Please note that any and all information contained in this document is the property of Thermo Fisher Scientific Oy. This
confidential information ("Confidential Information") shall not be reproduced in whole part or disclosed to any third party
without the prior written approval of Thermo Fisher Scientific Oy. The receiving party shall ensure that it's employees,
officers, representatives and agents shall not disclose to third parties any Confidential Information.

Upon written request from Thermo Fisher Scientific Oy, the receiving party shall promptly return all Confidential Information
or destroy all Confidential Information.

2 KingFisher Presto Interface Specification

1.3 Introduction

This document is intended for software designers writing computer programs for controlling the instrument. It contains
information necessary to know in order to be able to write such a program. This document can also be used for black box
testing of the instrument. It is assumed that the reader of this document is familiar with the function of the instrument.

Syntaxes of commands, responses and events are documented using a style similar to the Xpath syntax. For examples
and more detailed description of the usage, see Appendix - XML path syntax.

Thermo Fisher Scientific SPA Ratastie 2 FIN-01621 Vantaa, Finland www.thermo.com

http://en.wikipedia.org/wiki/XPath

Chapter 2

Hardware Requirements

The KingFisher Presto instrument has three alternate communication ports for connecting to a computer: RS232, USB and
LAN.

2.1 RS232

Serial port parameters are fixed to the following values: baud rate: 115200, 1 start bit, 8 data bits, 1 stop bit and no parity.

The serial connector on the instrument is a 9 pin male D connector. Reception is through pin 3, transmission through pin 2
and signal ground is at pin 7.

XON/XOFF flow control is used. No hardware handshaking is used. The XON character is 0x11 and the XOFF character
0x13. No frames or checksums are used in the RS232 protocol. The instrument ignores any NUL bytes (0x00) it receives.

Maximum length of a command line is limited by the receive buffer size, which is 512 bytes. Note however that XOFF will
be sent when the buffer is half full (256 characters).

2.1.1 Abort

To send the Abort command to the instrument, the computer must first flush it's transmit buffer and force transmit flow
control to enabled state. Only then is the Abort command sent.

Abort command is a single character, the escape control code, which is decimal 27 or hex 0x1B.

22 USB

The instrument has a standard USB series "B" receptacle for connecting to a PC. The USB interface complies with the
USB 2.0 full speed device specification. The device class of the instrument is HID (Human Interface Device), and it has
only one configuration which is numbered 1. In this configuration there is one interface with an interrupt IN endpoint (0x81)
and an interrupt OUT endpoint (0x01).

The HID Report descriptor of the instrument defines three reports: A 64 byte Input report, a 64 byte Output report and a
2-byte Feature report. As there is only one type of each report, no report ID:s are used. The usage of all the reports is
vendor specific. Read the USB Device Class Definition for Human Interface Devices for more information of the HID device
interface.

The following identification information is returned during enumeration:
Vendor id: 0xOAB6
Product id: 0x02C9

4 Hardware Requirements

Manufacturer: Thermo Fisher Scientific Oy

Serial number: The serial number string of the instrument.

2.21 Sending commands to the instrument

Commands are sent using the 64 byte HID class Output report. The first byte of the report must be the number of actual
data (command) bytes in the report. The command data starts from the second byte of the report. If the command data
does not fill up the whole report, the instrument discards the remaining bytes of the report.

2.2.2 Receiving responses from the instrument

The PC software receives the instrument responses in a 64 byte HID class Input report. The first byte of the report is the
number of actual response bytes in the report. The response data starts from the second byte of the report. If the response
data does not fill up the whole report, the PC software must ignore the remaining bytes of the report.

2.2.3 Abort

Because there is no way the PC application can force an Abort to the interrupt OUT endpoint past previous commands,
aborting must be performed in two phases.

First the PC must send the two-byte Feature report through the control endpoint. The first byte of the report must be
nonzero and the second zero. This causes the instrument to discard all commands it may already have received and also
discard all commands it receives until the Abort command is received.

Then the PC must send the Abort character through the interrupt OUT endpoint just like any other command.

2.2.4 Flow Control

When the receive buffer of the instrument becomes full, it simply stops reading the Output reports. This means that any
command writes the PC software makes do not complete until the instrument resumes reading the reports.

If the PC application cannot process the Input reports at the same rate as the instrument sends them, it should send a
Feature report to the instrument to request it stop sending the Input reports. The first byte of the Feature report must be
zero and the second nonzero. When the PC software can again receive more Input reports, it should send a Feature report
with both bytes zero.

23 LAN

The instrument can optionally be connected through a Local Area Network. The interface is IEEE 802.3 compliant and has
a RJ-45 connector for connection to a 10BASE-T network.

Before the LAN interface can be used, the Ethernet interface MAC address and the TCP port number must be programmed
using the PAR 38 and PAR 39 commands, respectively.

The instrument gets an IP address dynamically from a DHCP server. Unless the server is configured to give a fixed IP
address to the instrument, a PC software wishing to connect to the instrument through LAN must use the WS-Discovery
protocol to find the transport address of the instrument.

There are three strings the instrument uses for matching the Types of a WS-Discovery Probe message: ThermoDevice,

KingFisherPresto and SN_x, where x is the serial number string of the instrument. An example Probe looking for King-
FisherPresto instrument serial number 12345:

<?xml version="1.0" encoding="UTF-8"?>
<s:Envelope
xmlns:s="http://www.w3.0rg/2003/05/soap-envelope"

Thermo Fisher Scientific SPA Ratastie 2 FIN-01621 Vantaa, Finland www.thermo.com

23 LAN 5

xmlns:a="http://www.w3.0rg/2005/08/addressing">
xmlns:d="http://docs.oasis-open.org/ws—-dd/ns/discovery/2009/01">
<s:Header>
<a:Action>http://docs.oasis-open.org/ws-dd/ns/discovery/2009/01/Probe</a:Action>
<a:MessageID>urn:uuid:dc280767-49b0-4c5e-97£3-95£961df0053</a:MessageID>
<a:ReplyTo>
<a:Address>http://www.w3.0rg/2005/08/addressing/anonymous</a:Address>
</a:ReplyTo>
<a:To>urn:docs-oasis-open-org:ws—-dd:ns:discovery:2009:01</a:To>
</s:Header>
<s:Body>
<Probe xmlns="http://docs.oasis-open.org/ws-dd/ns/discovery/2009/01">
<d:Types>ThermoDevice KingFisherPresto SN_12345</Types>
</Probe>
</s:Body>
</s:Envelope>

If the instrument is connected to LAN, it responds with a ProbeMatches message. The <d:Xaddrs> field of the response
is the transport address to use to communicate with the instrument. The transport address consists of the instrument IP
address and the TCP port number the instrument is listening.

Although the instrument always responds to WS-Discovery messages, it only lets one client at a time to connect to the TCP
port. The client should close the port when done communicating with the instrument to allow another client to connect.

2.3.1 Abort

Sending the Abort character to the instrument is a two phase process.

First the PC must send an UDP message containing text "Abort" (without quotes or newline) to the same UDP port number
as is used for the TCP and wait a moment for an identical UDP response from the instrument. The UDP response is sent
to the same UDP port as the PC used for sending the UDP message. If no UDP response, retry at least two times using
short timeout.

Then, when an UDP response is received or no response after retries, send Abort character (0x1B) to the TCP port.

Thermo Fisher Scientific SPA Ratastie 2 FIN-01621 Vantaa, Finland www.thermo.com

Hardware Requirements

Thermo Fisher Scientific SPA Ratastie 2 FIN-01621 Vantaa, Finland www.thermo.com

Chapter 3

Communication Protocol

3.1 General

This document describes the commands and the responses as they are seen by the controlling software and the instrument
without the framing added by the data transport layer.

3.2 Character Encoding

All commands and responses are ASCIl encoded except values, which are encoded using UTF-8 character encoding.

3.3 Maximum Line Width

Communication is based on CR or/and LF terminated lines.

1

Note. The maximum lenght of a input line including carriage return and line feed characters is 200.

3.4 XML Format

All commands, responses and events are XML elements. Elements may or may not contain line feed and carriage return
characters. Both start-tag-end-tag and empty-element-tag formats are supported. Tag and parameter names are not case
sensitive.

Syntaxes of commands, responses and events are documented using a style similar to the Xpath syntax. For examples
and more detailed description of the usage, see Appendix - XML path syntax.

3.5 Attributes and Tag Data

Attribute values can be booleans, integers, floating point numbers or strings. Each command and response contains
different amount of attributes and tags and the order of those is not fixed.

http://en.wikipedia.org/wiki/XPath

8 Communication Protocol

3.6 Root Tag Types

See table below for the three different kind of root tags used in the communication protocol between the KingFisher Presto
instrument and a controlling system.

Tag Description

Cmd Command from the controlling system to the KingFisher
Presto instrument

Res Response to a command

Evt Event message from the KingFisher Presto instrument to
the controlling system

3.6.1 <Cmd> - Commands

Commands are sent from a controlling system to the KingFisher Presto instrument. They are used for example to start a
protocol execution.

Examples:

<Cmd name="MyCommand" parameterl="Something”>
<Something>More complex value</Something>
</Cmd>

<Cmd name="MyOtherCommand" parameterl="Nonething” />

See Commands and Responses for the complete list of available commands.

3.6.2 <Res> - Responses

Responses to the commands contain attribute named "ok", which can be used to quickly check if a command was succes-
full.

Examples:

<Res name="MyCommand" ok="false”>
<Thing>Lots of things</Thing>
</Res>

<Res name="MyOtherCommand" ok="true” />

See Commands and Responses for detailed information.

3.6.3 <Evt> -Events

Events are used to indicate data periodically or in the case of events occurring. Some events require acknowledgement
from the controlling system, see command Acknowledge for more information.

Examples:

<Evt name="Temperature" value="23"/>
<Evt name="LoadPlate" plate="Plate 1"/>

<Evt name="LoadPlate" plate="Plate 2"/>

Thermo Fisher Scientific SPA Ratastie 2 FIN-01621 Vantaa, Finland www.thermo.com

3.7 Error Handling 9

<Evt name="ChangePlate">
<Evt name="RemovePlate" plate="Plate 2"/>
<Evt name="LoadPlate" plate="Plate 3"/>
</Evt>

<Evt name="RemovePlate" plate="Plate 3"/>

See Events for the complete list of events sent by the KingFisher Presto instrument.

3.7 Error Handling

Low level error handling is based on the mechanisms of the underlaying communication protocol, for example on guaran-
teed data integrity of the USB protocol.

Commands and Responses use "ok" attribute for replying if a command is accepted or rejected, see <Res> - Responses.
Responses to commands may also contain Error Codes and/or Warning Codes.

Failed protocol and step executions and other spontaneous errors are reported with Error events which may require that
the controlling system sends an ErrorAcknowledge command before the instrument continues its operation.

Examples

<Cmd name="StartProtocol" protocol="KF Blood 12 DW”/>
<Res name="StartProtocol" ok="true” />
<Cmd name="StartProtocol" protocol="KF Blood 12 DW”/>
<Res name="StartProtocol" ok="false”>

<Error code="124">Protocol already running.</Error>
</Res>
<Evt name="Error" ack="true">

<Error code="321">Execution failed</Error>
</Evt>

Thermo Fisher Scientific SPA Ratastie 2 FIN-01621 Vantaa, Finland www.thermo.com

10 Communication Protocol

3.8 Error Codes

Code Description

2 Received an unknown command.

3 Already connected to another port.

4 Head position error.

5 Magnets position error.

6 Turntable position error.

7 Heater unit position error.

8 Lock position error.

11 Invalid command argument.

13 Protocol memory error.

14 Protocol memory is full.

15 No protocols found from the protocols memory.

16 Protocol was not found from the protocols memory.

17 Given tip name was not found from the protocol.

18 Given step name was not found from the given tip of the
protocol.

19 A name of a step to start was not given.

20 A name of a tip where to start the step was not given.

23 Protocol name is invalid. Maximum lenght of the name is
100 bytes e.q. 100 ASCII characters.

24 Invalid protocaol file.

25 Protocol is not executable.

27 Protocol is too large and can’t be loaded.

28 Instrument is executing, please wait.

32 No protocol is currently running.

33 Data transmit to USB port failed (timed out).

34 Cannot run magnets down without tips.

35 Magnetic head is missing.

38 Plate not detected in processing position.

39 Plate detected in processing position.

40 Plate not detected in load position.

41 Plate detected in load position.

43 Protocol is not for this instrument.

3.9 Warning Codes

Code Description

101 Instrument is already connected.

102 Previous command was incomplete.

103 Date/time string is invalid, instrument time was not set.

104 Protocol execution was aborted by the user.

105 Step execution was aborted by the user.

106 Existing protocol was overwritten.

107 Heater preheat was turned off between single step
executions.

108 Heater was turned off after 10 minutes since last single
step execution.

Thermo Fisher Scientific SPA Ratastie 2 FIN-01621 Vantaa, Finland www.thermo.com

Chapter 4

Commands and Responses

Note. Remember to terminate commands with a new line character (ASCII 10).

» Abort

» Acknowledge

+ Connect

+ Disconnect

« DownloadProtocol

» ErrorAcknowledge

+ GetProtocolDuration
+ GetProtocolTimeLeft
+ GetStatus

« ListProtocols

» RemoveProtocol

* Rotate

+ SetTemperatureReporting
« StartProtocol
 Stop

» UploadProtocol

12 Commands and Responses

4.1 Abort

Aborts any ongoing operation in the instrument.

Syntax

The Abort command is an exception to the normal command syntax. For example for RS232 interface, it is a single
character, the escape control code, which is decimal 27 or hex 0x1B. When the Abort character is received, the execution
of a possible ongoing protocol, step or some other process is stopped. Heating is turned off and all the motors are stopped.
Heating block is driven down if possible. Response to the Abort command is replied immediately and event Ready is sent
after motors are stopped/driven. In case of errors during driving, event Error is sent.

Abort command differs from the command Stop in the way, that the message buffers of the communication port are flushed
and an existing communication connection is disconnect. Event Aborted is sent before disconnection to a connected
communication port if the Abort command was received from some other communication port.

Immediate response to the Abort command follows the same syntax as the other Commands and Responses use.

Syntax
Tag / Attribute Data type and range/limits Description
Res@name String: "Abort" Name of the command
Res@ok Boolean string: "true" or "false" Error status quick peek, true if the
command was accepted
Details

For the instrument to react to the Abort command immediately it must reach the instrument promptly after it is sent. This
means that the Abort command must override all previous commands queued to the instrument. This is not trivial and is
done differently for different interfaces.

Serial port Before sending the Abort character, the flow control must be forced to XON state so that the Abort character
will actually be sent.

USB port Because there is no way the PC application can force an Abort to the interrupt OUT endpoint past previous
commands, aborting must be performed in two phases.

First the PC must send the two-byte Feature report through the control endpoint. The first byte of the report must be
nonzero and the second zero. This causes the instrument to discard all commands it may already have received and also
discard all commands it receives until the Abort command is received.

LAN port First the PC must send an UDP message containing text "Abort" (without quotes or newline) to the same UDP
port number as is used for the TCP and wait a moment for an identical UDP response from the instrument. The UDP
response is sent to the same UDP port as the PC used for sending the UDP message.

If no UDP response, retry at least two times using short timeout.

When an UDP response is received or no response after retries, send Abort character (0x1B) to the TCP port.

Using KFModule.dll By far the easiest way to send Abort to the instrument is to use the KFModule_Abort() function of the
KFModule.dll library. It will automatically select the right Abort procedure depending on which interface is used.

Thermo Fisher Scientific SPA Ratastie 2 FIN-01621 Vantaa, Finland www.thermo.com

4.1 Abort

13

Example

<Res name="Abort" ok="true"/>

Thermo Fisher Scientific SPA Ratastie 2 FIN-01621 Vantaa, Finland www.thermo.com

14 Commands and Responses

4.2 Acknowledge

General notification message for acknowledging the KingFisher Presto instrument.

Syntax
Tag / Attribute Data type and range/limits Description
Cmd@name String: "Acknowledge" Name of the command
Reply
Tag / Attribute Data type and range/limits Description
Res@name String: "Acknowledge" Name of the command
Res@ok Boolean string: "true" or "false" Error status quick peek, true if
command was succesfull
Details

This command is used to acknowledge the instrument in various different kind of situations, for example after LoadPlate
event.

Example

<Cmd name="Acknowledge"/>

<Res name="Acknowledge" ok="true"/>

Thermo Fisher Scientific SPA Ratastie 2 FIN-01621 Vantaa, Finland www.thermo.com

4.3 Connect 15

4.3 Connect

Establish a connection between a controlling system and a KingFisher Presto instrument.

Syntax
Tag / Attribute Data type and range/limits Description
Cmd@name String:"Connect” Name of the command
Cmd@setTime Date/time string in format: Optional attribute for setting the
"YYYY-MM-DD hh:mm:ss" instrument date and time
Reply
Tag / Attribute Data type and range/limits Description
Res@name String: "Connect" Name of the command
Res@ok Boolean string: "true" or "false" Error status quick peek, true if
command was succesfull
Res/Instrument/text() String: Max 100 chars Name/type of the instrument
Res/Version/text() String: Max 100 chars Firmware version string
Res/Serial/text() String: Max 100 chars Instrument serial number
Details

The instrument does not accept any other commands before this command is succesfully received. Instrument serial
number, type and firware version number is returned in the reply message.

Optional attribute "setTime" can be used to set the date and time of the instrument. There is no battery backup for the
calendar of the instrument, so the date and time needs to be re-set every time the instrument powers on. Note that for
example KingFisherDIl Windows driver does this automatically.

Response message may contain warning and error codes depending on the state of the instrument. See command Get-
Status. See also examples below for most typical use cases.

Example 1 - Succesfully connected

<Cmd name="Connect"/>

<Res name="Connect" ok="true">
<Instrument>KingFisher Presto</Instrument>
<Version>0.0.0</Version>
<Serial>123-456</Serial>

</Res>

Example 2 - Connect with date/time setting

<Cmd name="Connect" setTime="2015-09-04 09:29:59"/>

<Res name="Connect" ok="true">
<Instrument>KingFisher Presto</Instrument>
<Version>0.0.0</Version>
<Serial>123-456</Serial>

</Res>

Thermo Fisher Scientific SPA Ratastie 2 FIN-01621 Vantaa, Finland www.thermo.com

16 Commands and Responses

Example 3 - Allready connected

<Cmd name="Connect"/>

<Res name="Connect" ok="true">
<Warning code="101">Instrument is already connected.</Warning>
<Instrument>KingFisher Presto</Instrument>
<Version>0.0.0</Version>
<Serial>123-456</Serial>

</Res>

Example 4 - Connection is reserved for another communication port

<Cmd name="Connect"/>

<Res name="Connect" ok="false">
<Error code="3">Allready connected to another port.</Error>
</Res>

Example 5 - Connection is established but the instrument is in error state

<Cmd name="Connect"/>

<Res name="Connect" ok="true">
<Error code="4">Head position error.</Error>
<Instrument>KingFisherPresto</Instrument>
<Version>0.0.1</Version>
<Serial>123-456</Serial>

</Res>

Thermo Fisher Scientific SPA Ratastie 2 FIN-01621 Vantaa, Finland www.thermo.com

4.4 Disconnect 17

4.4 Disconnect

Disconnect an established connection between a controlling system and a KingFisher Presto instrument.

Syntax
Tag / Attribute Data type and range/limits Description
Cmd@name String: "Disconnect” Name of the command
Reply
Tag / Attribute Data type and range/limits Description
Res@name String: "Disconnect” Name of the command
Res@ok Boolean string: "true" or "false" Error status quick peek, true if
command was succesfull
Details

Note that the instrument does not reply to this command if the connection is already closed. See command Connect for
more details.

Example

<Cmd name="Disconnect"/>

<Res name="Disconnect" ok="true"/>

Thermo Fisher Scientific SPA Ratastie 2 FIN-01621 Vantaa, Finland www.thermo.com

18 Commands and Responses

4.5 DownloadProtocol

Download a protocol from the internal memory of the KingFisher Presto instrument.

Note! It's much easier to use KFModule_DownloadProtocol() API function from KFModule.dll than this command directly. KF-
Module_DownloadProtocol handles base64 decoding and outputs Bindlt .bdz files.

Syntax
Tag / Attribute Data type and range/limits Description
Cmd@name String: "DownloadProtocol” Name of the command
Cmd@protocol String: Max 100 bytes Name of the protocol to be trasferred,
case sensitive.
Reply
Tag / Attribute Data type and range/limits Description
Res@name String: "DownloadProtocol” Name of the command
Res@ok Boolean string: "true" or "false" Error status quick peek, true if
command was succesfull
Res/CDATA Base64 string/strings XML character data section
containing base64 encoded protocol
file
Details

Protocol is received as base64 encoded binary data in a CDATA section of the response message.

Example

<Cmd name="DownloadProtocol" protocol="KingFisher Presto Blood 24 DW"/>

<Res name="DownloadProtocol" ok="true">
<! [CDATA[
PHNOZXA+DQpoZXJ1IGlzIGFu
IGV4YW1lwbGUNCmZvciB0aGUg
YmEzZTYOIGVUY29kZXINCjwv
c3R1lcD4=
11>
</Res>

Thermo Fisher Scientific SPA Ratastie 2 FIN-01621 Vantaa, Finland www.thermo.com

4.6 ErrorAcknowledge 19

4.6 ErrorAcknowledge

This command must be used to clear instrument errors.

Syntax
Tag / Attribute Data type and range/limits Description
Cmd@name String: "ErrorAcknowledge” Name of the command
Reply
Tag / Attribute Data type and range/limits Description
Res@name String: "ErrorAcknowledge” Name of the command
Res@ok Boolean string: "true" or "false" Error status quick peek, true if
command was succesfull
Details

When an error is detected during execution, it is reported using Error event. This command must be send in order to clear
the error state of the instrument. See also command GetStatus.

Example

<Cmd name="ErrorAcknowledge"/>

<Res name="ErrorAcknowledge" ok="true"/>

Thermo Fisher Scientific SPA Ratastie 2 FIN-01621 Vantaa, Finland www.thermo.com

20

Commands and Responses

4.7 GetProtocolDuration

Get KingFisher Presto protocol duration.

Syntax

Tag / Attribute Data type and range/limits Description

Cmd@name String: "GetProtocolDuration" Name of the command

Cmd@protocol String: Max 100 chars Name of a protocol, case sensitive.
Reply

Tag / Attribute Data type and range/limits Description

Res@name String: "GetProtocolDuration” Name of the command.

Res@ok Boolean string: "true" or "false" Error status quick peek.

Res/Init@protocol

String

Name of the protocol.

Res/Init/TimeStamp[1,2]@at

Time string: hh:mm:ss

Start or stop time of the protocol
initialization.

Res/Init/TimeStamp[1,2]@type

Type string of the timestamp: "Start"
or "Stop"

Init step uses only "Start" and "Stop"
types.

Res/Init/TimeStamp[1,2]@step

String "Init"

Fixed step name.

Res/Init/TimeStamp[2]@duration

XML Duration data type

Duration of the protocol initialization
phase.

Res/Tip/TimeStamp[n]@at

Time string: hh:mm:ss

Timestamp referenced to the start
time of the protocol initialization.

Res/Tip/TimeStamp[n]@type

Type string of the timestamp: "Start",
"Event" or "Stop"

Time of step start/stop or an pause
event. See command
GetProtocolTimeLeft.

Res/Tip/TimeStamp[n]@step

String

Name of a step, fixed "pseudo” step
or user defined, see event
StepStarted.

Res/Tip/TimeStamp[n]@duration

XML Duration data type

Duration of a step.

Res/Tip/TimeStamp[n]@msg String Message string for "Event" type.
Res/Tip/TimeStamp[n]@plate String Name of a plate for "Event" type.
Res/Tip/TimeStamp[n]@remove String Name of a plate to remove for
"ChangePlate" event type.
Res/Tip/TimeStamp[n]@Iload String Name of a plate to load for
"ChangePlate" event type.
Res/Init@protocol String Name of the protocol.

Res/Finish/TimeStamp[1,2]@at

Time string: hh:mm:ss

Start or stop time of the protocol
finalization.

Res/Finish/TimeStamp[1,2]@type

Type string of the timestamp: "Start"
or "Stop"

Finish step uses only "Start" and
"Stop" types.

Res/Finish/TimeStamp[1,2]@step

String "Init"

Fixed step name.

Res/Finish/TimeStamp[2]@duration

XML Duration data type

Duration of the protocol initialization
phase.

Res/Total@duration

XML Duration data type

Total duration of the protocol.

Details

This command returns the full time structure of a KingFisher Presto protocol as a step by step list of timestamps in addition

to the total duration.

Thermo Fisher Scientific SPA Ratastie 2 FIN-01621 Vantaa, Finland www.thermo.com

http://www.w3schools.com/schema/schema_dtypes_date.asp
http://www.w3schools.com/schema/schema_dtypes_date.asp
http://www.w3schools.com/schema/schema_dtypes_date.asp
http://www.w3schools.com/schema/schema_dtypes_date.asp

4.7 GetProtocolDuration

Examples

<Cmd name="GetProtocolDuration" protocol="My Test Protocol"

<Res name="GetProtocolDuration"
<Init protocol="My Test Protocol">

<TimeStamp at="00:00:00" type="Start"

<TimeStamp at="00:00:00"

</Init>

<Tip name="Tipl">

<TimeStamp
<TimeStamp
<TimeStamp
<TimeStamp
<TimeStamp
<TimeStamp
<TimeStamp
<TimeStamp
<TimeStamp
<TimeStamp
<TimeStamp
<TimeStamp
<TimeStamp
<TimeStamp
<TimeStamp
<TimeStamp
<TimeStamp
<TimeStamp
</Tip>

at="00:
at="00:
at="00:
at="00:
at="00:
at="00:
at="00:
at="00:
at="00:
at="00:
at="00:
at="00:
at="00:
at="00:
at="00:
at="00:
at="00:
at="00:

00:
00:
00:
00:
00:
41"
41"
41
03:
03:
04:
04:
04:
:24"
124"
04:
124"
:26"

01
01
01

04
04

04
04

oo"
oo"
og"
og"
og"

15"
15"
17"
7"
17"

24n

ok="true">

type="Stop"

type="Start"
type="Event"
type="Stop"

type="Start"
type="Event"
type="Stop"

type="Start"
type="Event"

type="Stop"
type="Start"
type="Stop"

type="Start"
type="Event"
type="Stop"

type="Start"
type="Event"
type="Event"
type="Stop"

<Finish protocol="My Test Protocol">
<TimeStamp at="00:04:26" type="Start"
<TimeStamp at="00:04:26" type="Stop"

</Finish>

<Total duration="PT4M26S"/>

</Res>

/>

step="Init"/>
step="Init" duration="PTOS"/>

step="Pick-Up"/>

msg="Load plate" plate="Tip Comb"/>
step="Pick-Up" duration="PT8S"/>
step="Mix1"/>

msg="Load plate" plate="Plate 1"/>
step="Mix1" duration="PT1M33S"/>
step="Mix2"/>

msg="Change plate" remove="Tip Comb"
step="Mix2" duration="PTI1M34S"/>
step="Dryl"/>

step="Dryl" duration="PT1M2S"/>
step="Leave"/>

msg="Change plate" remove="Plate 1" load="Tip Comb"/>
step="Leave" duration="PT7S"/>

step="Unload"/>

msg="Remove plate" plate="Plate 2"/>

msg="Remove plate" plate="Tip Comb"/>

step="Unload" duration="PT2S"/>

load="Plate 2"/>

step="Finish"/>
step="Finish" duration="PTOS"/>

Thermo Fisher Scientific SPA Ratastie 2 FIN-01621 Vantaa, Finland www.thermo.com

22 Commands and Responses

4.8 GetProtocolTimeLeft

Get time left of a KingFisher Presto protocol or single step execution.

Syntax
Tag / Attribute Data type and range/limits Description
Cmd@name String: "GetProtocolTimeLeft" Name of the command
Cmd@protocol String: Max 100 chars Name of a protocol, case sensitive.
Reply
Tag / Attribute Data type and range/limits Description
Res@name String: "GetProtocolTimeLeft" Name of the command
Res@ok Boolean string: "true" or "false" Error status quick peek.
Res/TimeToPause@value XML Duration data type Time to next plate
load/change/remove or pause event
Res/TimelLeft@value XML Duration data type Total time left of the protocol/step
execution
Details

This command returns time left to a next pause event and total time left of a protocol execution.

Note! Element TimeToPause is not included when running single step execution. Note also that then the value of TimeLeft
refers to the total execution time of a step being executed.

A pause event is an event which needs to be acknowledged with Acknowledge command. Non-optional LoadPlate,
ChangePlate, RemovePlate and ChangeMagnets events are also pause events in addition to obvious Pause event.

Note that Error is not a pause event and it needs to be acknowledged with a special ErrorAcknowledge command.

See also event ProtocolTimelLeft.

Examples

<Cmd name="StartProtocol" protocol="My Test Protocol"/>
<Res name="StartProtocol" ok="true"/>
<Cmd name="GetProtocolTimeLeft"/>

<Res name="GetProtocolTimeLeft" ok="true">
<TimeToPause value="PT0S"/>
<TimeLeft value="PT30M53S"/>

</Res>

<Cmd name="StartProtocol" protocol="My Test Protocol" tip="Tipl" step="Mixl1l"/>
<Res name="StartProtocol" ok="true"/>
<Cmd name="GetProtocolTimeLeft"/>

<Res name="GetProtocolTimeLeft" ok="true">
<TimeLeft value="PT2M42S"/>
</Res>

Thermo Fisher Scientific SPA Ratastie 2 FIN-01621 Vantaa, Finland www.thermo.com

http://www.w3schools.com/schema/schema_dtypes_date.asp
http://www.w3schools.com/schema/schema_dtypes_date.asp

4.9 GetStatus

23

4.9 GetStatus

Get instrument status: Idle, Busy or In error.

Syntax
Tag / Attribute Data type and range/limits Description
Cmd@name String: "GetStatus” Name of the command
Reply
Tag / Attribute Data type and range/limits Description
Res@name String: "GetStatus" Name of the command
Res@ok Boolean string: "true" or "false" Error status quick peek, true if
command was succesfull and the
instrument is not in an error state.
Res/Status/text() String: "Idle", "Busy" or "In error" Status of the instrument. Idle: waiting
for a new commmand, Busy:
instrument is executing a command,
In error: instrument is in an error
state.
Res/Error@code uint16_t: see Error Codes Error code number
Res/Error/text() String: Max 100 characters Description of an error
Details

This command is used to query the status or state of the instrument. When the instrument is executing StartProtocol or
Rotate command, it will reply with Busy status. When an execution is finished or after succesfull power on initialization, the
instrument will reply with Idle status. If an error occurs during an execution or initialization, then the instrument will transition
to an error state and reply with In error status to the GetStatus command. An ErrorAcknowledge command must be send
in order to clear the error. No other commands are accepted until the error is cleared. Expect commands Disconnect and

Connect. Note that Error event is also sent if and an error occurs during execution.

Examples

<Cmd name="GetStatus"/>

<Res name="GetStatus" ok="true">
<Status>Idle</Status>
</Res>

<Res name="GetStatus" ok="true">
<Status>Busy</Status>

</Res>

<Res name="GetStatus" ok="false">

<Error code="5">Turntable position error.</Error>

<Status>In error</Status>
</Res>

Thermo Fisher Scientific SPA Ratastie 2 FIN-01621 Vantaa, Finland www.thermo.com

24

Commands and Responses

4.10 ListProtocols

List protocols in the internal memory of the KingFisher Presto instrument.

Syntax
Tag / Attribute Data type and range/limits Description
Cmd@name String: "ListProtocols" Name of the command
Reply
Tag / Attribute Data type and range/limits Description
Res@name String: "ListProtocols" Name of the command
Res@ok Boolean string: "true" or "false" Error status quick peek, true if

command was succesfull

Res/Protocols/Protocol[n]

String: Max 100 chars

Unique name of a protocol "n"

Res/MemoryUsed@value

uint16_t: 0 - 100

Protocol memory usage percentage

Details

This command returns a list of all available protocols in the instrument and a protocol memory usage percentage.

Example

<Cmd name="ListProtocols"/>

<Res name="ListProtocols"

<Protocols>

ok="true">

<Protocol>KingFisher Presto Blood 24 DW</Protocol>
<Protocol>KingFisher Presto Cells 96</Protocol>
<Protocol>KingFisher Presto Demo 24 DW</Protocol>

</Protocols>

<MemoryUsed value="35"/>

</Res>

Thermo Fisher Scientific SPA Ratastie 2 FIN-01621 Vantaa, Finland www.thermo.com

4.11 RemoveProtocol 25

4.11 RemoveProtocol

Remove a protocol from the internal memory of the KingFisher Presto instrument.

Syntax
Tag / Attribute Data type and range/limits Description
Cmd@name String: "RemoveProtocol” Name of the command
Cmd@protocol String: Max 100 bytes Name of the protocol to be removed,
case sensitive.
Reply
Tag / Attribute Data type and range/limits Description
Res@name String: "RemoveProtocol” Name of the command
Res@ok Boolean string: "true" or "false" Error status quick peek, true if
command was succesfull
Details

Protocol is removed permanently from the internal memory of the instrument.

Example

<Cmd name="RemoveProtocol" protocol="KingFisher Presto Blood 24 DW"/>

<Res name="RemoveProtocol" ok="true"/>

Thermo Fisher Scientific SPA Ratastie 2 FIN-01621 Vantaa, Finland www.thermo.com

26 Commands and Responses

4.12 Rotate

Rotate the turntable.

Syntax
Tag / Attribute Data type and range/limits Description
Cmd@name String: "Rotate" Name of the command
Cmd@nest uint16 t: 1,2 Nest of the turntable to be positioned
Cmd@position uint16_t: 1,2 The position where the nest is to be
rotated. Position 1 is the
procesessing position and position 2
is the load/unload position.
Reply
Tag / Attribute Data type and range/limits Description
Res@name String: "Rotate" Name of the command
Res@ok Boolean string: "true" or "false" Error status quick peek, true if
command was succesfull
Details

Response to the command is replied immediately and event Ready is sent by the instrument after the rotation is completed.
If rotation fails, then an Error event will be sent instead. See also command GetStatus.

Example

<Cmd name="Rotate" nest="1" position="2" />

<Res name="Rotate" ok="true"/>

Thermo Fisher Scientific SPA Ratastie 2 FIN-01621 Vantaa, Finland www.thermo.com

4.13 SetTemperatureReporting

27

4.13 SetTemperatureReporting

Enable/disable temperature events with desired interval.

Syntax
Tag / Attribute Data type and range/limits Description
Cmd@name String: "SetTemperatureReporting” Name of the command
Cmd@interval XML Duration data type Interval of the temperature event.
Min 1 second.
Reply
Tag / Attribute Data type and range/limits Description
Res@name String: "SetTemperatureReporting” Name of the command
Res@ok Boolean string: "true" or "false" Error status quick peek, true if
command was succesfull and the
instrument is not in an error state.
Details

This command can be used to trigger Temperature events with a minimum interval of one second. If the interval is set to
"PTOS" or zero, then the events are disabled.

Note The interval is fixed to five seconds in KingFisher Presto Windows simulator and it can vary depending on the the

operating system load and version.

Examples

<Cmd name="SetTemperatureReporting" interval="PT3S"/>

<Res name="SetTemperatureReporting" ok="true" />

<Evt name="Temperature">
<Ambient value="22.1"/>
<Heater value="37.7"/>
</Evt>

<Evt name="Temperature">
<Ambient value="22.2"/>
<Heater value="37.6"/>
</Evt>

Thermo Fisher Scientific SPA Ratastie 2 FIN-01621 Vantaa, Finland www.thermo.com

http://www.w3schools.com/schema/schema_dtypes_date.asp

28 Commands and Responses

4.14 StartProtocol

Start executing a protocol or a step from a protocol.

Syntax
Tag / Attribute Data type and range/limits Description
Cmd@name String: "StartProtocol" Name of the command
Cmd@protocol String: Max 100 chars Name of the protocol to be started,
case sensitive.
Cmd@tip String: Max 100 chars Optional, name of a tip containing the
step to be started.
Cmd@step String: Max 100 chars Optional, name of the step to be
started.
Reply
Tag / Attribute Data type and range/limits Description
Res@name String: "StartProtocol" Name of the command
Res@ok Boolean string: "true" or "false" Error status quick peek, true if
command was succesfull
Details

This command is accepted if the instrument is not already running a step or a protocol. Event Ready is sent by the
instrument after the execution. If attributes "tip" and "step" are given, then a single step execution is started instead of a
full protocol execution. If execution fails, then an Error event will be sent instead. See also command GetStatus.

Note. The protocol needs to be uploaded to the internal memory of the instrument beforehand. See commands List-
Protocols and UploadProtocol.

Note. If this command is used to start single step execution, then the controlling system needs to handle turtable rotations
by sending separate Rotate commands.

Event StepStarted is sent for every step in the protocol being executed.

Examples

<Cmd name="StartProtocol" protocol="KingFisher Presto Blood 96 DW"/>
<Res name="StartProtocol" ok="true"/>
<Cmd name="StartProtocol" protocol="KingFisher Presto Blood 96 DW" tip="Tipl" step="Mix1l"/>

<Res name="StartProtocol" ok="true"/>

Thermo Fisher Scientific SPA Ratastie 2 FIN-01621 Vantaa, Finland www.thermo.com

4.15 Stop 29

4.15 Stop

Stop execution.

Syntax
Tag / Attribute Data type and range/limits Description
Cmd@name String: "Stop" Name of the command
Reply
Tag / Attribute Data type and range/limits Description
Res@name String: "Stop" Name of the command
Res@ok Boolean string: "true" or "false" Error status quick peek, true if
command was succesfull
Details

The Stop command is used to stop an ongoing execution of protocol, step or some other process. Response to the
command is replied immediately and event Ready is sent after all the motors of the instrument are stopped In case of
errors during stopping, event Error is sent.

Note that in addition to the Stop command there is also the isUsbAbort procedure for stopping the instrument. The isUsb-
Abort procedure differs from the normal command-reply message exchange, see isPageUsblinterface for more detailed
information.

Example

<Cmd name="Stop"/>

<Res name="Stop" ok="true"/>

Thermo Fisher Scientific SPA Ratastie 2 FIN-01621 Vantaa, Finland www.thermo.com

30

Commands and Responses

416 UploadProtocol

Transfer a protocol to the internal memory of the KingFisher Presto instrument.

Note! It's much easier to use KFModule_UploadProtocol() API function from KFModule.dll than this command directly. KF-
Module_UploadProtocol takes Bindlt .bdz files as input parameter and handles both CRC calculation and base64 encoding.

Syntax

Tag / Attribute Data type and range/limits Description

Cmd@name String: "UploadProtocol” Name of the command

Cmd@protocol String: Max 100 bytes Name of the protocol to be trasferred,
case sensitive.

Cmd@crc uint32_t CRC value of the Bindlt protocol file
data.

Cmd[CDATA] Base64 string/strings XML character data section
containing base64 encoded protocol
file

Reply

Tag / Attribute Data type and range/limits Description

Res@name String: "UploadProtocol” Name of the command

Res@ok Boolean string: "true" or "false" Error status quick peek, true if
command was succesfull

Details

Existing protocol is overwritten. Possible error codes are listed in the response message.

Note! Lines in the CDATA section must be n x 4 characters of base 64 encoded data. Except the last line.

Example

<Cmd name="UploadProtocol" protocol="KingFisher Presto Blood 24 DW"

<! [CDATA[
PHNOZXA+DQpoZXJ1IGlzIGFu
IGV4AYW1wbGUNCmZvciB0aGUg
YmFzZTYOIGVUY29kZXINCjwv
c3R1lcD4=
11>
</Cmd>

<Res name="UploadProtocol" ok="true"/>

crc="123456" >

Thermo Fisher Scientific SPA Ratastie 2 FIN-01621 Vantaa, Finland www.thermo.com

http://en.wikipedia.org/wiki/Base64>

Chapter 5

Events

 Aborted

» ChangeMagnets
» ChangePlate

* Error

+ LoadPlate

+ Pause

+ ProtocolTimeLeft
* Ready

* RemovePlate

+ StepStarted

» Temperature

32

Events

5.1 Aborted

Instrument aborted event.

Syntax
Tag / Attribute Data type and range/limits Description
Evt@name String: "Aborted" Name of the event
Details

This event is sent to a connected communication port if the KingFisher Presto is aborted for some other communication
port. See command Abort. More specifically, see Abort for USB, Abort for LAN and Abort for RS232.

Examples

<Evt name="Aborted"/>

Thermo Fisher Scientific SPA Ratastie 2 FIN-01621 Vantaa, Finland www.thermo.com

5.2 ChangeMagnets 33

5.2 ChangeMagnets

KingFisher Presto is requesting a changing of the magnet heads.

Syntax
Tag / Attribute Data type and range/limits Description
Evt@name String : "ChangeMagnets” Name of the event
Evi@tips String: Max 100 chars Name of the tips for the magnet
heads
Details

This event is sent by the KingFisher Presto instrument when a protocol with a multiple types of magnet heads is requiring
a change of the magnet heads.

Note that the changing of the magnet heads is a manual operation.

Instrument continues the execution of the protocol after the command Acknowledge is sent by the controlling system.

Example

<Evt name="ChangeMagnets" tips="Tip 24 DW"/>

Thermo Fisher Scientific SPA Ratastie 2 FIN-01621 Vantaa, Finland www.thermo.com

34 Events

5.3 ChangePlate

KingFisher Presto is requesting a plate change.

Syntax
Tag / Attribute Data type and range/limits Description
Evt@name String: "ChangePlate" Name of the event
Evt@optional Boolean string: "true" or "false" If true, then the plate change is
possible but not required. If false,
then the instrument will not continue
operation untill the plate is changed.
Evt/Evi[1]@name String: "RemovePlate” Name of the wrapped event
Evt/Evi[1]@plate String: Max 100 chars Plate name
Evt/Evt[1]@optional Boolean string: "true" or "false" See Evt/@optional
Evt/Evt[2]@name String: "LoadPlate" Name of the wrapped event
Evt/Evt[2]@plate String: Max 100 chars Plate name
Evt/Evt[2]@optional Boolean string: "true" or "false” See Evt/@optional
Details

The instrument sends this event to a controlling system, when a plate can be changed in the load position. Event parameter
"optional" may be set to "true" to indicate that the plate change is not yet obligatory. The controlling system can perform the
change operation at this point and notify the instrument using Acknowledge command. The protocol execution time can be
minimized by changing the plate immediately after this first event, but the controlling system can also choose to wait when
the plate change is actually needed to be done.

If the event with the "optional" parameter is neglected and not acknowledged by the controlling system, then the instrument
will send another event with the parameter "optional” set to "false". Now the controlling system must change the plate and
notify the instrument using Acknowledge command so that the protocol under execution can continue.

The change plate event is structured in the way, that it contains RemovePlate and LoadPlate events. Note that only one
Acknowledge command is required though.

Example

<Evt name="ChangePlate" optional="true">
<Evt name="RemovePlate" plate="Plate 1" optional="true"/>
<Evt name="LoadPlate" plate="Plate 2" optional="true"/>
</Evt>

<Evt name="ChangePlate" optional="false">
<Evt name="RemovePlate" plate="Plate 1" optional="false"/>
<Evt name="LoadPlate" plate="Plate 2" optional="false"/>
</Evt>

Thermo Fisher Scientific SPA Ratastie 2 FIN-01621 Vantaa, Finland www.thermo.com

5.4 Error

35

5.4 Error

Spontaneous error message from the KingFisher Presto instrument.

Syntax
Tag / Attribute Data type and range/limits Description
Evt@name String: "Error" Name of the event
Evt/Error@code uint16_t: see Error Codes Error code number
Evt/Error/text() String: Max 100 characters Description of the error
Details

This event is sent for example after failed turntable rotation, see command Rotate. The instrument will transition to an error

state and an ErrorAcknowledge command must be send in order to clear the error.

Examples

<Evt name="Error">

<Error code="5">Turntable position error.</Error>

</Evt>

Thermo Fisher Scientific SPA Ratastie 2 FIN-01621 Vantaa, Finland www.thermo.com

36 Events

5.5 LoadPlate

KingFisher Presto is requesting a plate to be inserted to the load position.

Syntax
Tag / Attribute Data type and range/limits Description
Evt@name String : "LoadPlate” Name of the event
Evt@plate String: Max 100 chars Plate name
Evt@optional Boolean string: "true" or "false" If true, then the loading of the plate is
possible but not required. If false,
then the instrument will not continue
operation untill the plate is loaded.
Details

When the instrument is ready for a new plate to be loaded during protocol execution, then it sends this event to the
controlling system. Event parameter "optional” may be set to "true" to indicate that the plate can be loaded but it is not yet
needed. The controlling system can perform the load process at this point and notify the instrument using Acknowledge
command. The controlling system can minimize the protocol execution time by loading the plate immediately after this first
event, but it can also choose to wait when the plate is actually required.

If the event with the "optional" parameter is neglected and not acknowledged by the controlling system, then the instrument
will send another event with the parameter "optional" set to "false”. Now the controlling system must load the plate and
notify the instrument using Acknowledge command so that the protocol under execution can continue.

Example

<Evt name="LoadPlate" plate="Plate 1" optional="true"/>

<Evt name="LoadPlate" plate="Plate 1" optional="false"/>

Thermo Fisher Scientific SPA Ratastie 2 FIN-01621 Vantaa, Finland www.thermo.com

5.6 Pause

37

5.6 Pause

Event from a Pause step. User is requested to perform actions to a plate.

Syntax
Tag / Attribute Data type and range/limits Description
Evt@name String: "Pause” Name of the event
Evt@plate String: Max 100 chars Plate name
Evt/Messagel[text()] String: Max ??? chars Message for the user
Details

Instrument must be notified using Acknowledge command so that the pause step can continue.

Example

<Evt name="Pause" plate="Plate 1" >
<Message>Dispense 10 pl of ethanol to each well.</Message>

</Evt

Thermo Fisher Scientific SPA Ratastie 2 FIN-01621 Vantaa, Finland www.thermo.com

38

Events

5.7 ProtocolTimeLeft

Spontaneous time left event from a KingFisher Presto protocol or single step execution.

Syntax
Tag / Attribute Data type and range/limits Description
Evt@name String: "ProtocolTimeLeft" Name of the event

Evt/TimeToPause@value

XML Duration data type

Time to next plate
load/change/remove or pause event

Evt/TimelLeft@value

XML Duration data type

Total time left of the protocol/step
execution

Details

This event is sent automatically after every StepStarted event. See command GetProtocolTimeLeft for more details.

Note! Element TimeToPause is not included when running single step execution. Note also that then the value of TimeLeft

refers to the total execution time of a step being executed.

Examples

<Evt name="ProtocolTimeLeft">
<TimeToPause value="PTOS"/>
<TimeLeft value="PT30M53sS"/>

</Evt>

<Evt name="ProtocolTimeLeft">
<TimeLeft value="PT2M42S"/>

</Evt>

Thermo Fisher Scientific SPA Ratastie 2 FIN-01621 Vantaa, Finland www.thermo.com

http://www.w3schools.com/schema/schema_dtypes_date.asp
http://www.w3schools.com/schema/schema_dtypes_date.asp

5.8 Ready

39

5.8 Ready

Step or protocol execution completed.

Syntax
Tag / Attribute Data type and range/limits Description
Evt@name String: "Ready" Name of the event
Details

This event is sent by the instrument after execution of a step or a protocol started with command StartProtocol. See also

Rotate.

Examples

<Evt name="Ready"/>

Thermo Fisher Scientific SPA Ratastie 2 FIN-01621 Vantaa, Finland www.thermo.com

40 Events

5.9 RemovePlate

KingFisher Presto is requesting a plate to be removed from the load position.

Syntax
Tag / Attribute Data type and range/limits Description
Evt@name String: "RemovePlate” Name of the event
Evt@plate String: Max 100 chars Plate name
Evt@optional Boolean string: "true" or "false" If true, then the removing of the plate
is possible but not required. If false,
then the instrument will not continue
operation untill the plate is removed.
Details

The instrument sends this event to a controlling system, when a plate can be removed from the load position. Event
parameter "optional” may be set to "true" to indicate that the plate can be removed but it is not obligatory. The controlling
system can perform the removal operation at this point and notify the instrument using Acknowledge command. The
protocol execution time can be minimized by removing the plate immediately after this first event, but the controlling system
can also choose to wait when the plate is actually needed to be removed.

If the event with the "optional" parameter is neglected and not acknowledged by the controlling system, then the instrument
will send another event with the parameter "optional” set to "false". Now the controlling system must remove the plate and
notify the instrument using Acknowledge command so that the protocol under execution can continue.

Example

<Evt name="RemovePlate" plate="Plate 1" optional="true"/>

<Evt name="RemovePlate" plate="Plate 1" optional="false"/>

Thermo Fisher Scientific SPA Ratastie 2 FIN-01621 Vantaa, Finland www.thermo.com

5.10 StepStarted

M

5.10 StepStarted

Step start notification from the KingFisher Presto instrument.

Syntax
Tag / Attribute Data type and range/limits Description
Evt@name String: "StepStarted” Name of the event
Evt/Step@name String Name of the step
Evt/Step@pseudo Boolean string: "true" or "false" If this attribute is "false”, then the
step is a normal Bindlt Protocol step
e.g. Mix, Dry, Pause, Collect or
Release. If attribute is "true" then the
step is a fixed pseudo step like Init,
Pick-Up, Leave and Unload.
Evt/Step@tip String Name of the tip goup under the step
is in the BindlIt protocol
Evt/Step@plate String Name of a plate used in the step
Details

This event in sent when a protocol step is started. See also command StartProtocol.

Examples

<Evt name="StepStarted">
<Step name="Init" pseudo="true"/>
</Evt>

<Evt name="StepStarted">
<Step name="Pick-Up" pseudo="true" tip="Tipl" plate="Tip Comb" />
</Evt>

<Evt name="StepStarted">
<Step name="Mix1" pseudo="false" tip="Tipl" plate="Plate 1"/>
</Evt>

<Evt name="StepStarted">
<Step name="Unload" pseudo="true" tip="Tipl" />
</Evt>

Thermo Fisher Scientific SPA Ratastie 2 FIN-01621 Vantaa, Finland www.thermo.com

42 Events

5.11 Temperature

Temperature measurements event.

Syntax
Tag / Attribute Data type and range/limits Description
Evt@name String: "Temperature" Name of the event
Evt/Ambient@value float Ambient temperature in Celciuss
degrees
Evt/Heater@value float Heater block temperature in Celciuss
degrees
Details

This event reports ambient and heater block temperatures. See command SetTemperatureReporting.

Examples

<Evt name="Temperature">
<Ambient value="22.1"/>
<Heater value="37.7"/>
</Evt>

Thermo Fisher Scientific SPA Ratastie 2 FIN-01621 Vantaa, Finland www.thermo.com

Chapter 6

Appendix - XML path syntax

Syntaxes of Events, Commands and Responses are documented using a style similar to the Xpath syntax.

Here is a few examples of the usage. Note that also the actual syntaxes are explained using detailed examples.

Example XML block:

<T1l>
<T2>
<T3 al="123">
This is a sentence.
</T3>
<T4>
<T5 a2="321"/>
<T5 az2="432">
<T5 a2="543">
<T5 az2="654">
</T4>
</T2>
<! [CDATA [ABCDEFG]]>
</T1>

Path to the T3:

T1/T2/T3

Path to the text of the tag T3:

T1/T2/T3/text ()

Path to the attribute "a1” of the tag T3:

T1/T2/T3QRal

Path to the attribute "a2” of the third T5 tag with a value of "543”

T1/T2/T4/T5[3]Q@Ra2

Path to the CDATA of the tag T1

Note that XPath does not support addressing a CDATA element, we’ll use this syntax:

T1[CDATA]

http://en.wikipedia.org/wiki/XPath

KFModule.dll

Interface Specification

Contents

1 KFModuleDlIl Interface Specification

2 Using KFModuleDII

2.1
2.2

About

Exported functions L e e e
KFModule OpenUsb
KFModule_OpenSerial e e
KFModule_ OpenLan
KFModule_ListLanDevices e e e
KFModule_ OpenSimulator o
KFModule Close e e e e
KFModule_Connect e e e e
KFModule_Disconnect e e e
KFModule_AttachEvent e
KFModule_AttachMsg e e e
KFModule_AttachCallback e
KFModule_Send e e e e
KFModule_Abort e e e e
KFModule_ReadReceived e e e
KFModule_ReadResponse e e e e e e
KFModule_ReadEvent e e e
KFModule_UploadProtocol e e e e
KFModule_DownloadProtocol e e e
KFModule_GetError e e e e e

2.2.1
222
223
224
225
2.2.6
227
2.2.8
229
2.2.10
2.2.11
2212
2.2.13
2.2.14
2.2.15
2.2.16
2.2.17
2.2.18
2.2.19

3 File Index

3.1

File List

4 File Documentation

4.1
4.2

api.h File Reference
KFModuleDIl.c File Reference
4.2.1 Detailed Description L e
4.2.2 Function Documentation
4221 KFModule Abort o e e e e e e e e e
4222 KFModule_AttachCallback o e e
4223 KFModule_AttachEvent e e e e e e e e e e
4224 KFModule_AttachMsg o e e
4225 KFModule Close o e e e e e e e e e e e e e e
4226 KFModule_Connect e e e e e e e
4227 KFModule Disconnect L e e e e e e e e e e
4228 KFModule_DownloadProtocol
4229 KFModule_GetError e e e e e e e e e e e e
42210 KFModule_ListLanDevices L L e e e e e e
42211 KFModuleOpenLan e e
42212 KFModule OpenSerial e e e e e
42213 KFModule.OpenSimulator e e

ii CONTENTS
42214 KFModule OpenUsb e e e e e 33
42215 KFModule_lReadEvent L e e e e 34
42216 KFModule_lReadReceived L e 34
42217 KFModule_lReadResponse Lo e e e e e e 35
42218 KFModule_Send e e e e 35
42219 KFModule_UploadProtocol e 36

4.3 KFModuleDIl.h File Reference 36
4.3.1 Detailed Description e 38
4.3.2 Macro Definition Documentation L 38

4.3.2.1 KF.PRESTOPPID o e e e e e e e e e e e e e e e e e e 38
4.3.2.2 KFMODULE_ERROR o e e e e e s e 38
4.3.2.3 KFMODULE EVENT o o o e e e e e e e e e 38
4.3.2.4 KFMODULE-RECEIVE o e e e e e e s e e 38
43.25 KFMODULE_RESPONSE e e e e e e s e e e e s e e 38
4.3.2.6 KFMODULE_TRANSMIT o o e e e e e e e e e e s e e e 39
4.3.3 Enumeration Type Documentation 39
4.3.3.1 KFM_ERROR e e e e e e 39
4.3.3.2 KFM_SIMULATOR_PORT e e e e e e e e 39
4.3.4 Function Documentation e 39
4341 KFModule_Abort e e e e 39
4342 KFModule_AttachCallback e e e e e e e e e e 40
4343 KFModule_AttachEvent L e e e 40
43.4.4 KFModule_AttachMsg e e e 40
4345 KFModule_Close o e e e e e e e e 41
43.4.6 KFModule_Connect L e e e e e e e 41
4347 KFModule Disconnect e e e e e e e e e e e 41
43438 KFModule_DownloadProtocol oL 42
4.3.4.9 KFModule_GetError e e e e e 42
43410 KFModule_ListLanDevices L Lo 42
43411 KFModule.OpenLan e e e e e 43
43412 KFModule-OpenSerial e e e e e 43
4.3.413 KFModule.OpenSimulator e 44
4.3.414 KFModule OpenUsb e e e e 44
43415 KFModule_lReadEvent L L e e e e 45
43.4.16 KFModule_lReadReceived L L e e e 45
4.3.4.17 KFModule_ReadResponse e e e e 46
43418 KFModule_Send e e e e 47
4.3.4.19 KFModule_UploadProtocol e e 47

4.4 mainpage.h File Reference 48

Index 49

Thermo Fisher Scientific SPA Ratastie 2 FIN-01621 Vantaa, Finland www.thermo.com

Chapter 1

KFModuleDII Interface Specification

About

The purpose of the KFModule.dll dynamic link library is to make interface to a KFModule instrument easy. For communica-
tion with the instrument the KFModule.dll uses another DLLs: ThermoUSB.dll, ThermoLAN.dIl and ThermoCOM.dIl. The
user of the KFModule.dll does not have to know anything about the actual hardware port. Just use the functions provided
by KFModule.dlIl.

Confidential

This document has been prepared by Thermo Fisher Scientific Oy to be used solely for the purposes defined by Thermo
Fisher Scientific Oy. Use for other purposes is not authorized.

Please note that any and all information contained in this document is the property of Thermo Fisher Scientific Oy. This
confidential information ("Confidential Information") shall not be reproduced in whole part or disclosed to any third party
without the prior written approval of Thermo Fisher Scientific Oy. The receiving party shall ensure that it's employees,
officers, representatives and agents shall not disclose to third parties any Confidential Information.

Upon written request from Thermo Fisher Scientific Oy, the receiving party shall promptly return all Confidential Information
or destroy all Confidential Information.

KFModuleDlIl Interface Specification

Thermo Fisher Scientific SPA Ratastie 2 FIN-01621 Vantaa, Finland www.thermo.com

Chapter 2

Using KFModuleDlI

2.1 About

Because it is not trivial to write PC software from scratch to communicate with a KFModule instrument, two Dynamic Link
Libraries are provided which hide much of the complexity of the communication.

The first one is a DLL for the actual HW interface: ThermoUSB.dIl, ThermoLAN.dIl or ThermoCOM.dIl. These DLLs are
generic libraries for communicating with several different Thermo Scientific microplate instruments.

The second one is KFModule.dll, which uses DLLs mentioned above to communicate with the KFModule instrument.

To communicate with a KFModule instrument you use the exported functions of KFModule.dll. No knowledge of the other
DLLs is required, they only need to be in a folder where Windows can find them (probably the same place where the
KFModule.dll is loaded from).

Depending on your project setup, you may find useful a couple of other files which are also provided. The header file
KFModuleDIl.h contains the prototypes of the exported functions and definitions of constant values used by the dll. File
KFModule.lib contains information about the dll the linker uses to add references to the library in the executable. This way
the dll is automatically loaded and the exported functions of the library can be called as easy as the functions in the code
using the dll.

4 Using KFModuleDIl

2.2 Exported functions

» KFModule_OpenUsb

» KFModule_OpenSerial

* KFModule_OpenLan

+ KFModule_ListLanDevices
» KFModule_OpenSimulator
* KFModule_Close

+ KFModule_Connect

« KFModule_Disconnect

« KFModule_AttachEvent

» KFModule_AttachMsg

» KFModule_AttachCallback
+ KFModule_Send

« KFModule_ Abort

+ KFModule ReadReceived
» KFModule_ReadResponse
« KFModule ReadEvent

» KFModule_UploadProtocol
* KFModule_DownloadProtocol

« KFModule_GetError

Thermo Fisher Scientific SPA Ratastie 2 FIN-01621 Vantaa, Finland www.thermo.com

2.2 Exported functions

2.2.1

KFModule_OpenUsh

Open an USB communication channel to a KFModule instrument. Full declaration: KFModule_OpenUsb().

Parameters

SerialNumber

Pointer to the serial number string of the device. The device must report an identical serial number for the
connection to succeed. This parameter may be NULL, in which case the connection is made to the first
device with matching VendorID and ProductID.

productld

Manufacturer product id number of the USB device.

Returns

A handle to the opened communication channel. This handle must be passed to subsequent calls to the other functions
in this library. If the channel could not be opened, NULL is returned.

One of the KFModule_OpenXxx() functions must be called first before using any other functions in the library. Only one
connection per device is allowed.

1

Note. Function KFModule_Connect() must be called after this function in order to use the XML interface to com-

municate with the instrument.

Thermo Fisher Scientific SPA Ratastie 2 FIN-01621 Vantaa, Finland www.thermo.com

Using KFModuleDIl

2.2.2 KFModule_OpenSerial

Open serial communication port to a KFModule instrument. Full declaration: KFModule_OpenSerial().

Parameters
port | Serial port number.
baud | Serial port baudrate.

DeviceName | Pointer to the device name string of the device. The device must report an identical name to the VER
command for the connection to succeed. This parameter may be NULL, in which case the device name is
ignored.

SerialNumber | Pointer to the serial number string of the device. The device must report an identical serial number to the
VER command for the connection to succeed. This parameter may be NULL, in which case the serial
number is ignored.
Returns

A handle to the opened communication channel. This handle must be passed to subsequent calls to the other functions
in this library. If the channel could not be opened, NULL is returned.

One of the KFModule_OpenXxx() functions must be called first before using any other functions in the library. Only one
connection per serial port is allowed. If both DeviceName and SerialNumber are NULL, no VER command is sent to the

instrument.

1

Note. Function KFModule_Connect() must be called after this function in order to use the XML interface to com-

municate with the instrument.

Thermo Fisher Scientific SPA Ratastie 2 FIN-01621 Vantaa, Finland www.thermo.com

2.2 Exported functions

2.2.3 KFModule_OpenLan

Open a LAN communication channel to a KFModule instrument. Full declaration: KFModule_OpenLan().

Parameters
instrumentName | Name of the instrument. This must match the device name the instrument uses for matching a WS--
Discovery Probe and Resolve.

SerialNumber | Pointer to the serial number string of the device. The device must report an identical serial number for the
connection to succeed. This parameter may be NULL, in which case the connection is made to the first
found KFModule instrument.

timeout | Timeout which is used to search the instrument. If 0 is given then WS-Discovery will use default 4 sec
timeout.
Returns

A handle to the opened communication channel. This handle must be passed to subsequent calls to the other functions
in this library. If the channel could not be opened, NULL is returned.

One of the KFModule_OpenXxx() functions must be called first before using any other functions in the library. Only one
connection per device is allowed.

1

Note. Function KFModule_Connect() must be called after this function in order to use the XML interface to com-

municate with the instrument.

Thermo Fisher Scientific SPA Ratastie 2 FIN-01621 Vantaa, Finland www.thermo.com

8 Using KFModuleDIl

2.2.4 KFModule_ListLanDevices

List instruments found on the LAN. Full declaration: KFModule_ListLanDevices().

Parameters

the found devices are not filtered by the name.

instrumentName | Name of the instrument. Only instruments with a matching name are listed. May be NULL, in which case

NULL, in which case the found devices are not filtered by the serial number.

SerialNumber | The serial number of the instrument. Only instruments with a matching serial number are listed. May be

buf | The buffer to list the found devices to.

bufsize | Size of the buffer in bytes.

Returns

The size in bytes of the complete list of found devices. If the returned value is equal or smaller than the given buffer
size, the buffer contains the complete list of devices found on the LAN. If the returned value is higher than the given
buffer size, no data is returned and the caller must call the function again with big enough buffer. Return value 0 means
that no instruments were found.

On success, the caller’s buffer contains zero terminated strings with a combined length of the return value. The string
terminating zeros are included in the length.

For each found instrument, the first string is the instrument IPv4 address and the TCP port number it is listening, enclosed
in square brackets, e.g. [10.32.196.210:49536].

The IP address string is followed by the WS-Discovery match strings, usually 3 of them. The first one is always "Thermo-
Device’, the second one is the instrument name and the third one the instrument serial number string.

If the match strings are followed by a string in angle brackets, e.g. <10.32.196.154:57403>, it means that the instrument
is currently connected that IP address and TCP port, and trying to connect to that instrument with function KFModule_-
OpenLan() will fail. If there is no string in square brackets, the instrument will accept a connection.

Thermo Fisher Scientific SPA Ratastie 2 FIN-01621 Vantaa, Finland www.thermo.com

2.2 Exported functions 9

2.2.5 KFModule_OpenSimulator

Open communication channel to KFModule simulator. Full declaration: KFModule_OpenSimulator().

Parameters

port | The simulator port to connect to, one of KFM_SIMULATOR_USB, KFM_SIMULATOR_COM, KFM_SIMU-
LATOR_DBG or KFM_SIMULATOR_LAN.

productld | (USB) product id of the instrument.

Returns

A handle to the opened communication channel. This handle must be passed to subsequent calls to the other functions
in this library. If the channel could not be opened, NULL is returned.

One of the KFModule_OpenXxx() functions must be called first before using any other functions in the library. Only one
connection per simulator communication channel is allowed.

1 Note. Function KFModule_Connect() must be called after this function in order to use the XML interface to com-
municate with the instrument.

Thermo Fisher Scientific SPA Ratastie 2 FIN-01621 Vantaa, Finland www.thermo.com

10 Using KFModuleDIl

2.2.6 KFModule_Close

Close a communication channel. Full declaration: KFModule_Close().

Parameters

\ hConn \ A handle returned by one of the KFModule_OpenXxx() functions.

Returns

One of KFM_ERROR codes, KFM_ERROR_SUCCESS on success.

This function should be called when the communication channel is no longer needed. Failing to close the channel prevents
new connections to the channel as long as the dll stays loaded.

1 Note. When using the XML interface, function KFModule_Disconnect() must be called before this function in order to
disconnect the instrument from the open communication channel. Otherwise the instrument may refuse new connections.

Thermo Fisher Scientific SPA Ratastie 2 FIN-01621 Vantaa, Finland www.thermo.com

2.2 Exported functions 11

2.2.7 KFModule_Connect

Connect to the instrument. Full declaration: KFModule_Connect().

Parameters

\ hConn \ A handle returned by one of the KFModule_OpenXxx() functions.

Returns

One of KFM_ERROR codes, KFM_ERROR_SUCCESS on success.

This function sends the "Connect” command with a current date/time setting to the instrument. It is recommended to use
this function to connect to the instrument so that the calendar of the instrument is always set to the local time automatically.

1 Note. This funtion returns before the actual connection is done, meaning that the return value indicates merely
if the starting of the command is succesfull of not. The instrument will send a separate response after the connection is
finished. See interface specification of the instrument in question for more details.

Thermo Fisher Scientific SPA Ratastie 2 FIN-01621 Vantaa, Finland www.thermo.com

12 Using KFModuleDIl

2.2.8 KFModule_Disconnect

Disconnect the instrument. Full declaration: KFModule_Disconnecty().

Parameters

\ hConn \ A handle returned by one of the KFModule_OpenXxx() functions.

Returns

One of KFM_ERROR codes, KFM_ERROR_SUCCESS on success.

This function sends the "disconnect” command to the instrument. This is only needed because of the symmetry in the list
of API functions. Disconnect() is the pair to Connect() function.

1 Note. This funtion returns before the actual connection is closed, meaning that the return value indicates merely if
the starting of the command is succesfull of not. The instrument will send a separate response just before the disconnection.
See interface specification of the instrument in question for more details.

Thermo Fisher Scientific SPA Ratastie 2 FIN-01621 Vantaa, Finland www.thermo.com

2.2 Exported functions 13

2.2.9 KFModule_AttachEvent

Attach an event object to a KFModule connection. Full declaration: KFModule_AttachEvent().

Parameters
hConn | A handle returned by one of the KFModule_OpenXxx() functions.
ev | Event(s) to signal.
object | Handle of an event object.
Returns

One of KFM_ERROR codes, KFM_ERROR_SUCCESS on success.

Parameter ’ev’ may be any combination of KFMODULE_RECEIVE, KFMODULE_TRANSMIT, KFMODULE_RESPONSE,
KFMODULE_EVENT and KFMODULE_ERROR. The event object is set to signaled state whenever any of the selected
event(s) occurs.

Parameter ‘object’ is a handle of a Windows event object. If NULL, the selected events will not be signaled.

This function may be called repeatedly to set up a different event object for each event. If the same event object is used for
more than one event, the application must check for all possible events after the event object is signalled.

Thermo Fisher Scientific SPA Ratastie 2 FIN-01621 Vantaa, Finland www.thermo.com

14

Using KFModuleDIl

2.2.10 KFModule_AttachMsg

Attach an event message to the KFModule connection. Full declaration: KFModule_AttachMsg().

Parameters
hConn | A handle returned by one of the KFModule_OpenXxx() functions.
hWhnd | Handle of the window to receive the message.
msg | Message id of the message to send.
evCode | Event(s) for which a message is sent.
Returns

One of KFM_ERROR codes, KFM_ERROR_SUCCESS on success.

A message with message id ‘'msg’ is sent to window "’hWnd’ whenever any of the event(s) selected with parameter ’evCode’
occurs. Parameter ’evCode’ may be any combination of KFMODULE_RECEIVE, KFMODULE_TRANSMIT, KFMODUL-
E_RESPONSE, KFMODULE_EVENT and KFMODULE_ERROR. The wParam of the sent message will be one of these

event codes.

Thermo Fisher Scientific SPA Ratastie 2 FIN-01621 Vantaa, Finland www.thermo.com

2.2 Exported functions 15

2.2.11 KFModule_AttachCallback

Attach an event callback function to the KFModule connection. Full declaration: KFModule_AttachCallback().

Parameters

hConn | A handle returned by one of the KFModule_OpenXxx() functions.

callback | Address of the callback function.

Returns

One of KFM_ERROR codes, KFM_ERROR_SUCCESS on success.

The callback function will be called whenever any of events KFMODULE_RECEIVE, KFMODULE_TRANSMIT, KFMOD-
ULE_RESPONSE, KFMODULE_EVENT or KFMODULE_ERROR occurs. The connection handle and the event code are
passed as parameters to the function.

Thermo Fisher Scientific SPA Ratastie 2 FIN-01621 Vantaa, Finland www.thermo.com

16 Using KFModuleDIl

2.2.12 KFModule_Send

Send a NUL terminated ASCII string to the instrument. Full declaration: KFModule_Send().

Parameters

hConn | A handle returned by one of the KFModule_OpenXxx() functions.

buf | The NUL terminated string to send.

Returns

One of KFM_ERROR codes, KFM_ERROR_SUCCESS on success.

Use this function to send commands and acknowledges to the instrument. For uploading and downloading a protocol there
are dedicated functions KFModule_UploadProtocol() and KFModule_DownloadProtocol(). Also connecting/disconnecting
is recommended to be done with separate KFModule_Connect() and KFModule_Disconnect() functions.

The data to be sent to the instrument is buffered in the dil. A KFMODULE_TRANSMIT event is sent to the application when
all data is sent. You may call this function repeatedly without waiting for the event, but a KFM_ERROR_OUT_OF_HEAP
error may be returned if you send a lot of data without waiting for the event.

1 Note. Remember to terminate commands with a new line character (ASCII 10). See interface specification of the
instrument in question for more details.

Thermo Fisher Scientific SPA Ratastie 2 FIN-01621 Vantaa, Finland www.thermo.com

2.2 Exported functions

17

2.2.13 KFModule_Abort
Send Abort command to the instrument. Full declaration: KFModule_Abort().

Parameters

hConn \ A handle returned by one of the KFModule_OpenXxx() functions.

Returns
One of KFM_ERROR codes, KFM_ERROR_SUCCESS on success.

Aborts any command(s) being executed in the instrument.

Thermo Fisher Scientific SPA Ratastie 2 FIN-01621 Vantaa, Finland www.thermo.com

18 Using KFModuleDIl

2.2.14 KFModule_ReadReceived

Read a received data line from the received data chain. Full declaration: KFModule_ReadReceived().

Parameters
hConn | A handle returned by one of the KFModule_OpenXxx() functions.
buf | Caller’s buffer for the line.
bufsize | Size of the caller’s buffer.
Returns

One of KFM_ERROR codes, KFM_ERROR_SUCCESS if any data was copied to caller’s buffer.

Call this function in response to the KFMODULE_RECEIVE event. The received data is neither a XML Response nor a
XML Event. An empty string will be copied to caller’s buffer when there is no more data to read. The returned string is
always NUL terminated and does not contain the CR/LF characters sent by the instrument.

1 Note. Always read all data from the KFModuleDIl when handling the event. Otherwise subsequent strings from the
instrument may be missed. This can happen especially when the user application doesn’t react to the events immediately.
See example below:

void handler_KFMODULE_RECEIVE (HANDLE connection)
{

KFM_ERROR err;
char buf[100];
while((err = KFModule_ReadReceived(connection, buf, sizeof(buf))) == KFM_ERROR_SUCCESS)

{
// Do something with the data
}

if(err > KFM_ERROR_NO_DATA)

{
// Handle the error

}

Thermo Fisher Scientific SPA Ratastie 2 FIN-01621 Vantaa, Finland www.thermo.com

2.2 Exported functions 19

2.2.15 KFModule_ReadResponse

Read a received XML response from the response chain. Full declaration: KFModule_ReadResponse().

Parameters
hConn | A handle returned by one of the KFModule_OpenXxx() functions.
buf | Caller’s buffer for the response.
bufsize | Size of the caller’s buffer.
Returns

One of KFM_ERROR codes, KFM_ERROR_SUCCESS if any data was copied to caller’s buffer.

Call this function in response to the KFMODULE_RESPONSE event. The received data is a XML Response. The event
is not sent until a whole XML Response is received. If the caller’s buffer is not large enough to hold the whole response,
a partial response is copied. An empty string is copied when there is no more data to read. The returned string is always
NUL terminated and does not contain the CR/LF characters sent by the instrument.

1 Note. Always read all data from the KFModuleDIl when handling the event. Otherwise subsequent responses may

be missed. This can happen especially when the user application doesn'’t react to the events immediately. See example
below:

void handler_KFMODULE_RESPONSE (HANDLE connection)
{

KFM_ERROR err;
char buf[1001];
while((err = KFModule_ReadResponse(connection, buf, sizeof(buf))) == KFM_ERROR_SUCCESS)

{
// Do something with the data
}

if (err > KFM_ERROR_NO_DATA)
{

// Handle the error
}

Thermo Fisher Scientific SPA Ratastie 2 FIN-01621 Vantaa, Finland www.thermo.com

20 Using KFModuleDIl

2.2.16 KFModule_ReadEvent

Read a received XML event from the event chain. Full declaration: KFModule_ReadEvent().

Parameters
hConn | A handle returned by one of the KFModule_OpenXxx() functions.
buf | Caller’s buffer for the event.
bufsize | Size of the caller’s buffer.
Returns

One of KFM_ERROR codes, KFM_ERROR_SUCCESS if any data was copied to caller’s buffer.

Call this function in response to the KFMODULE_EVENT event. The received data is a XML Event. The event is not sent
until a whole XML Event is received. If the caller’s buffer is not large enough to hold the whole Event, a partial Event is
copied. An empty string is copied when there is no more data to read. The returned string is always NUL terminated and
does not contain the CR/LF characters sent by the instrument.

1 Note. Always read all data from the KFModuleDIl when handling the event. Otherwise subsequent events from the
instrument may be missed. This can happen especially when the user application doesn’t react to the events immediately.
See example below:

void handler_KFMODULE_EVENT (HANDLE connection)
{

KFM_ERROR err;
char buf[1001];
while((err = KFModule_ReadEvent (connection, buf, sizeof(buf))) == KFM_ERROR_SUCCESS)

{
// Do something with the data
}

if (err > KFM_ERROR_NO_DATA)
{

// Handle the error
}

Thermo Fisher Scientific SPA Ratastie 2 FIN-01621 Vantaa, Finland www.thermo.com

2.2 Exported functions 21

2.2.17 KFModule_UploadProtocol

Export the requested protocol to the instrument. Full declaration: KFModule_UploadProtocol().

Parameters

hConn | A handle returned by one of the KFModule_OpenXxx() functions.

protocolName | Name of the protocol to export.

path | Complete path of the .bdz file containing the protocol to export.

Returns

One of KFM_ERROR codes, KFM_ERROR_SUCCESS on success.

The given protocol name must match exactly with a protocol name stored in the .bdz file. The .bdz file may contain several
protocols, but only the requested protocol is sent to the instrument.

1 Note. This funtion returns before the actual transfer is completed, meaning that the return value indicates merely
if the starting of the transfer is succesfull of not. The instrument will send a separate response after the transfer. See
interface specification of the instrument in question for more details.

Thermo Fisher Scientific SPA Ratastie 2 FIN-01621 Vantaa, Finland www.thermo.com

22

Using KFModuleDIl

2.2.18 KFModule_DownloadProtocol

Import the requested protocol to a .bdz file. Full declaration: KFModule_DownloadProtocol().

Parameters
hConn | A handle returned by one of the KFModule_OpenXxx() functions.
protocolName | Name of the protocol to export.
path | Complete path of the .bdz file to receive the protocol.
Returns

One of KFM_ERROR codes, KFM_ERROR_SUCCESS on success.

The given protocol name must match exactly with a protocol name stored in the instrument. The dIl must have write access
to the given .bdz file. The file will be overwritten by the dll.

1

Note. This funtion returns before the actual transfer is completed, meaning that the return value indicates merely

if the starting of the transfer is succesfull of not. The instrument will send a separate response after the transfer. See
interface specification of the instrument in question for more details.

Thermo Fisher Scientific SPA Ratastie 2 FIN-01621 Vantaa, Finland www.thermo.com

2.2 Exported functions 23

2.2.19 KFModule_GetError

Get the asynchronous error code. Full declaration: KFModule_GetError().

Parameters

\ hConn \ A handle returned by one of the KFModule_OpenXxx() functions.

Returns

One of KFM_ERROR codes, KFM_ERROR_SUCCESS on success.

Most dlIl functions return an error code, but an error may occur asynchronously in the receive or transmit thread of the dll.
This kind of errors are reported with the KFMODULE_ERROR event. The application should then call this function to read
the error code and take action. The error usually is KFM_ERROR_DISCONNECTED, in which case the application should
close the current connection and try to open a new one.

Thermo Fisher Scientific SPA Ratastie 2 FIN-01621 Vantaa, Finland www.thermo.com

24

Using KFModuleDIl

Thermo Fisher Scientific SPA Ratastie 2 FIN-01621 Vantaa, Finland www.thermo.com

Chapter 3

File Index

3.1

File List

Here is a list of all files with brief descriptions:

api.h

Part of KFModuleDIl documentation L 27
KFModuleDll.c

Interface to a Thermo Fisher Scientific KingFisher instrument that contains KingFisher module and uses

ThermoUSB.dIl, ThermoLAN.dIl or ThermoCOM.dIl 27
KFModuleDlIl.h

Functions exported from KFModule.dll 36
mainpage.h

KFModuleDll Interface Specification 48

26

File Index

Thermo Fisher Scientific SPA Ratastie 2 FIN-01621 Vantaa, Finland www.thermo.com

Chapter 4

File Documentation

4.1 api.h File Reference

Part of KFModuleDIl documentation.

4.2 KFModuleDll.c File Reference

Interface to a Thermo Fisher Scientific KingFisher instrument that contains KingFisher module and uses ThermoUSB.dll,
ThermoLAN.dIl or ThermoCOM.dII.

Functions

+ HANDLE WINAPI KFModule_OpenUsb (LPCSTR SerialNumber, WORD productid)

Open an USB communication channel to a KFModule instrument.
+ HANDLE WINAPI KFModule_OpenSerial (WORD port, DWORD baud, LPCSTR DeviceName, LPCSTR Serial-
Number)
Open serial communication port to a KFModule instrument.
* HANDLE WINAPI KFModule_OpenLan (LPCSTR DeviceName, LPCSTR SerialNumber, UINT timeout)

Open a LAN communication channel to a KFModule instrument.
+ DWORD WINAPI KFModule_ListLanDevices (LPCSTR DeviceName, LPCSTR SerialNumber, LPSTR buf, DWORD
bufsize)
List instruments found on the LAN.
+ HANDLE WINAPI KFModule_OpenSimulator (KFM_SIMULATOR_PORT port, WORD productld)
Open communication channel to KFModule simulator.
+ KFM_ERROR WINAPI KFModule_Close (HANDLE hConn)
Close a communication channel.
+ DIIExport KFM_ERROR WINAPI KFModule_Connect (HANDLE hConn)

Connect to the instrument.

+ DIlIExport KFM_ERROR WINAPI KFModule_Disconnect (HANDLE hConn)
Disconnect the instrument.

+ KFM_ERROR WINAPI KFModule_ReadReceived (HANDLE hConn, LPSTR buf, DWORD bufsize)
Read a received data line from the received data chain.

+ KFM_ERROR WINAPI KFModule_ReadResponse (HANDLE hConn, LPSTR buf, DWORD bufsize)

Read a received XML response from the response chain.
+ KFM_ERROR WINAPI KFModule_ReadEvent (HANDLE hConn, LPSTR buf, DWORD bufsize)

28 File Documentation

Read a received XML event from the event chain.
+ KFM_ERROR WINAPI KFModule_AttachEvent (HANDLE hConn, UINT ev, HANDLE object)

Attach an event object to a KFModule connection.
+ KFM_ERROR WINAPI KFModule_AttachMsg (HANDLE hConn, HANDLE hWnd, UINT msg, UINT evCode)

Attach an event message to the KFModule connection.
+ KFM_ERROR WINAPI KFModule_AttachCallback (HANDLE hConn, void(xcallback)(HANDLE conn, UINT ev))

Attach an event callback function to the KFModule connection.
+ KFM_ERROR WINAPI KFModule_Send (HANDLE hConn, LPCSTR buf)

Send a NUL terminated ASCII string to the instrument.
+ KFM_ERROR WINAPI KFModule_Abort (HANDLE hConn)

Send Abort command to the instrument.
+ KFM_ERROR WINAPI KFModule_UploadProtocol (HANDLE hConn, LPCSTR protocolName, LPCSTR path)

Export the requested protocol to the instrument.
+ KFM_ERROR WINAPI KFModule_DownloadProtocol (HANDLE hConn, LPCSTR protocolName, LPCSTR path)

Import the requested protocol to a .bdz file.
+ KFM_ERROR WINAPI KFModule_GetError (HANDLE hConn)

Get the asynchronous error code.

4.2.1 Detailed Description
Note

Copyright by Thermo Fisher Scientific Oy 2015

Definition in file KFModuleDll.c.

4.2.2 Function Documentation

4221 KFM_ERROR WINAPI KFModule_Abort (HANDLE hConn)

Parameters

\ hConn \ A handle returned by one of the KFModule_OpenXxx() functions.

Returns

One of KFM_ERROR codes, KFM_ERROR_SUCCESS on success.

Aborts any command(s) being executed in the instrument.

Definition at line 2553 of file KFModuleDIl.c.

4222 KFM_ERROR WINAPI KFModule_AttachCallback (HANDLE hConn, void(x)(HANDLE conn, UINT ev) callback)

Parameters

hConn | A handle returned by one of the KFModule_OpenXxx() functions.

callback | Address of the callback function.

Returns

One of KFM_ERROR codes, KFM_ERROR_SUCCESS on success.

The callback function will be called whenever any of events KFMODULE_RECEIVE, KFMODULE_TRANSMIT, KFMOD-
ULE_RESPONSE, KFMODULE_EVENT or KFMODULE_ERROR occurs. The connection handle and the event code are

Thermo Fisher Scientific SPA Ratastie 2 FIN-01621 Vantaa, Finland www.thermo.com

4.2 KFModuleDll.c File Reference 29

passed as parameters to the function.

Definition at line 2451 of file KFModuleDIl.c.

4.2.2.3 KFM_ERROR WINAPI KFModule_AttachEvent (HANDLE hConn, UINT ey, HANDLE object)

Parameters
hConn | A handle returned by one of the KFModule_OpenXxx() functions.
ev | Event(s) to signal.
object | Handle of an event object.
Returns

One of KFM_ERROR codes, KFM_ERROR_SUCCESS on success.

Parameter 'ev’ may be any combination of KFMODULE_RECEIVE, KFMODULE_TRANSMIT, KFMODULE_RESPONSE,
KFMODULE_EVENT and KFMODULE_ERROR. The event object is set to signaled state whenever any of the selected
event(s) occurs.

Parameter ‘object’ is a handle of a Windows event object. If NULL, the selected events will not be signaled.

This function may be called repeatedly to set up a different event object for each event. If the same event object is used for
more than one event, the application must check for all possible events after the event object is signalled.

Definition at line 2362 of file KFModuleDIl.c.

4.2.2.4 KFM_ERROR WINAPI KFModule_AttachMsg (HANDLE hConn, HANDLE hWnd, UINT msg, UINT evCode)

Parameters
hConn | A handle returned by one of the KFModule_OpenXxx() functions.
hWhnd | Handle of the window to receive the message.
msg | Message id of the message to send.
evCode | Event(s) for which a message is sent.
Returns

One of KFM_ERROR codes, KFM_ERROR_SUCCESS on success.

A message with message id ‘'msg’ is sent to window "’hWnd’ whenever any of the event(s) selected with parameter ’evCode’
occurs. Parameter '’evCode’ may be any combination of KFMODULE_RECEIVE, KFMODULE_TRANSMIT, KFMODUL-
E_RESPONSE, KFMODULE_EVENT and KFMODULE_ERROR. The wParam of the sent message will be one of these
event codes.

Definition at line 2417 of file KFModuleDIl.c.

4225 KFM_ERROR WINAPI KFModule_Close (HANDLE hConn)

Parameters

hConn \ A handle returned by one of the KFModule_OpenXxx() functions.

Returns

One of KFM_ERROR codes, KFM_ERROR_SUCCESS on success.

This function should be called when the communication channel is no longer needed. Failing to close the channel prevents
new connections to the channel as long as the dll stays loaded.

Thermo Fisher Scientific SPA Ratastie 2 FIN-01621 Vantaa, Finland www.thermo.com

30 File Documentation

1 Note. When using the XML interface, function KFModule_Disconnect() must be called before this function in order to
disconnect the instrument from the open communication channel. Otherwise the instrument may refuse new connections.

Definition at line 2099 of file KFModuleDIl.c.

4.2.2.6 DIIExport KFM_ERROR WINAPI KFModule_Connect (HANDLE hConn)

Parameters

\ hConn \ A handle returned by one of the KFModule_OpenXxx() functions.

Returns

One of KFM_ERROR codes, KFM_ERROR_SUCCESS on success.

This function sends the "Connect" command with a current date/time setting to the instrument. It is recommended to use
this function to connect to the instrument so that the calendar of the instrument is always set to the local time automatically.

1 Note. This funtion returns before the actual connection is done, meaning that the return value indicates merely
if the starting of the command is succesfull of not. The instrument will send a separate response after the connection is
finished. See interface specification of the instrument in question for more details.

Definition at line 2133 of file KFModuleDlIl.c.

4.2.2.7 DIIExport KFM_ERROR WINAPI KFModule_Disconnect (HANDLE hConn)

Parameters

\ hConn \ A handle returned by one of the KFModule_OpenXxx() functions.

Returns

One of KFM_ERROR codes, KFM_ERROR_SUCCESS on success.

This function sends the "disconnect" command to the instrument. This is only needed because of the symmetry in the list
of API functions. Disconnect() is the pair to Connect() function.

1 Note. This funtion returns before the actual connection is closed, meaning that the return value indicates merely if
the starting of the command is succesfull of not. The instrument will send a separate response just before the disconnection.
See interface specification of the instrument in question for more details.

Definition at line 2178 of file KFModuleDlIl.c.

4.2.2.8 KFM_ERROR WINAPI KFModule_DownloadProtocol (HANDLE hConn, LPCSTR protocolName, LPCSTR path)

Parameters

hConn | A handle returned by one of the KFModule_OpenXxx() functions.

protocolName | Name of the protocol to export.

path | Complete path of the .bdz file to receive the protocol.

Thermo Fisher Scientific SPA Ratastie 2 FIN-01621 Vantaa, Finland www.thermo.com

4.2 KFModuleDll.c File Reference 31

Returns

One of KFM_ERROR codes, KFM_ERROR_SUCCESS on success.

The given protocol name must match exactly with a protocol name stored in the instrument. The dil must have write access
to the given .bdz file. The file will be overwritten by the dll.

1 Note. This funtion returns before the actual transfer is completed, meaning that the return value indicates merely
if the starting of the transfer is succesfull of not. The instrument will send a separate response after the transfer. See
interface specification of the instrument in question for more details.

Definition at line 2627 of file KFModuleDlIl.c.

4229 KFM_ERROR WINAPI KFModule_GetError (HANDLE hConn)

Parameters

\ hConn \ A handle returned by one of the KFModule_OpenXxx() functions.

Returns

One of KFM_ERROR codes, KFM_ERROR_SUCCESS on success.

Most dll functions return an error code, but an error may occur asynchronously in the receive or transmit thread of the dll.
This kind of errors are reported with the KFMODULE_ERROR event. The application should then call this function to read
the error code and take action. The error usually is KFM_ERROR_DISCONNECTED, in which case the application should
close the current connection and try to open a new one.

Definition at line 2673 of file KFModuleDIl.c.

42210 DWORD WINAPI KFModule_ListLanDevices (LPCSTR DeviceName, LPCSTR SerialNumber, LPSTR buf, DWORD bufsize)

Parameters

instrumentName | Name of the instrument. Only instruments with a matching name are listed. May be NULL, in which case
the found devices are not filtered by the name.

SerialNumber | The serial number of the instrument. Only instruments with a matching serial number are listed. May be
NULL, in which case the found devices are not filtered by the serial number.

buf | The buffer to list the found devices to.

bufsize | Size of the buffer in bytes.

Returns

The size in bytes of the complete list of found devices. If the returned value is equal or smaller than the given buffer
size, the buffer contains the complete list of devices found on the LAN. If the returned value is higher than the given
buffer size, no data is returned and the caller must call the function again with big enough buffer. Return value 0 means
that no instruments were found.

On success, the caller’s buffer contains zero terminated strings with a combined length of the return value. The string
terminating zeros are included in the length.

For each found instrument, the first string is the instrument IPv4 address and the TCP port number it is listening, enclosed
in square brackets, e.g. [10.32.196.210:49536].

The IP address string is followed by the WS-Discovery match strings, usually 3 of them. The first one is always 'Thermo-
Device’, the second one is the instrument name and the third one the instrument serial number string.

Thermo Fisher Scientific SPA Ratastie 2 FIN-01621 Vantaa, Finland www.thermo.com

32 File Documentation

If the match strings are followed by a string in angle brackets, e.g. <10.32.196.154:57403>, it means that the instrument
is currently connected that IP address and TCP port, and trying to connect to that instrument with function KFModule_-
OpenLan() will fail. If there is no string in square brackets, the instrument will accept a connection.

Definition at line 2000 of file KFModuleDll.c.

4.2.2.11 HANDLE WINAPI KFModule_OpenLan (LPCSTR DeviceName, LPCSTR SerialNumber, UINT timeout)

Parameters
instrumentName | Name of the instrument. This must match the device name the instrument uses for matching a WS--
Discovery Probe and Resolve.

SerialNumber | Pointer to the serial number string of the device. The device must report an identical serial number for the
connection to succeed. This parameter may be NULL, in which case the connection is made to the first
found KFModule instrument.

timeout | Timeout which is used to search the instrument. If 0 is given then WS-Discovery will use default 4 sec
timeout.
Returns

A handle to the opened communication channel. This handle must be passed to subsequent calls to the other functions
in this library. If the channel could not be opened, NULL is returned.

One of the KFModule_OpenXxx() functions must be called first before using any other functions in the library. Only one
connection per device is allowed.

1

Note. Function KFModule_Connect() must be called after this function in order to use the XML interface to com-

municate with the instrument.

Definition at line 1935 of file KFModuleDIl.c.

4.2.2.12 HANDLE WINAPI KFModule_OpenSerial (WORD port, DWORD baud, LPCSTR DeviceName, LPCSTR SerialNumber)

Parameters
port | Serial port number.
baud | Serial port baudrate.

DeviceName | Pointer to the device name string of the device. The device must report an identical name to the VER
command for the connection to succeed. This parameter may be NULL, in which case the device name is
ignored.

SerialNumber | Pointer to the serial number string of the device. The device must report an identical serial number to the
VER command for the connection to succeed. This parameter may be NULL, in which case the serial
number is ignored.
Returns

A handle to the opened communication channel. This handle must be passed to subsequent calls to the other functions
in this library. If the channel could not be opened, NULL is returned.

One of the KFModule_OpenXxx() functions must be called first before using any other functions in the library. Only one
connection per serial port is allowed. If both DeviceName and SerialNumber are NULL, no VER command is sent to the

instrument.

Thermo Fisher Scientific SPA Ratastie 2 FIN-01621 Vantaa, Finland www.thermo.com

4.2 KFModuleDll.c File Reference 33

1

Note. Function KFModule_Connect() must be called after this function in order to use the XML interface to com-

municate with the instrument.

Definition at line 1880 of file KFModuleDIl.c.

4.2.2.13 HANDLE WINAPI KFModule_OpenSimulator (KFM_SIMULATOR_PORT port, WORD productld)

Parameters
port | The simulator port to connect to, one of KFM_SIMULATOR_USB, KFM_SIMULATOR_COM, KFM_SIMU-
LATOR_DBG or KFM_SIMULATOR_LAN.
productld | (USB) product id of the instrument.
Returns

A handle to the opened communication channel. This handle must be passed to subsequent calls to the other functions
in this library. If the channel could not be opened, NULL is returned.

One of the KFModule_OpenXxx() functions must be called first before using any other functions in the library. Only one
connection per simulator communication channel is allowed.

1

Note. Function KFModule_Connect() must be called after this function in order to use the XML interface to com-

municate with the instrument.

Definition at line 2030 of file KFModuleDlIl.c.

4.2.2.14 HANDLE WINAPI KFModule_OpenUsb (LPCSTR SerialNumber, WORD productld)

Parameters

SerialNumber

Pointer to the serial number string of the device. The device must report an identical serial number for the
connection to succeed. This parameter may be NULL, in which case the connection is made to the first
device with matching VendorID and ProductID.

productld

Manufacturer product id number of the USB device.

Returns

A handle to the opened communication channel. This handle must be passed to subsequent calls to the other functions
in this library. If the channel could not be opened, NULL is returned.

One of the KFModule_OpenXxx() functions must be called first before using any other functions in the library. Only one
connection per device is allowed.

1

Note. Function KFModule_Connect() must be called after this function in order to use the XML interface to com-

municate with the instrument.

Definition at line 1827 of file KFModuleDlIl.c.

Thermo Fisher Scientific SPA Ratastie 2 FIN-01621 Vantaa, Finland www.thermo.com

34 File Documentation

4.2.2.15 KFM_ERROR WINAPI KFModule_ReadEvent (HANDLE hConn, LPSTR buf, DWORD bufsize)

Parameters
hConn | A handle returned by one of the KFModule_OpenXxx() functions.
buf | Caller’s buffer for the event.
bufsize | Size of the caller’s buffer.
Returns

One of KFM_ERROR codes, KFM_ERROR_SUCCESS if any data was copied to caller’s buffer.

Call this function in response to the KFMODULE_EVENT event. The received data is a XML Event. The event is not sent
until a whole XML Event is received. If the caller’s buffer is not large enough to hold the whole Event, a partial Event is
copied. An empty string is copied when there is no more data to read. The returned string is always NUL terminated and
does not contain the CR/LF characters sent by the instrument.

1 Note. Always read all data from the KFModuleDIl when handling the event. Otherwise subsequent events from the
instrument may be missed. This can happen especially when the user application doesn’t react to the events immediately.
See example below:

void handler_ KFMODULE_EVENT (HANDLE connection)
{

KFM_ERROR err;
char buf[100];
while((err = KFModule_ReadEvent (connection, buf, sizeof(buf))) == KFM_ERROR_SUCCESS)

{
// Do something with the data
}

if(err > KFM_ERROR_NO_DATA)
{

// Handle the error
}

Definition at line 2333 of file KFModuleDlIl.c.

4.2.2.16 KFM_ERROR WINAPI KFModule_ReadReceived (HANDLE hConn, LPSTR buf, DWORD bufsize)

Parameters
hConn | A handle returned by one of the KFModule_OpenXxx() functions.
buf | Caller’s buffer for the line.
bufsize | Size of the caller’s buffer.
Returns

One of KFM_ERROR codes, KFM_ERROR_SUCCESS if any data was copied to caller’s buffer.

Call this function in response to the KFMODULE_RECEIVE event. The received data is neither a XML Response nor a
XML Event. An empty string will be copied to caller’s buffer when there is no more data to read. The returned string is
always NUL terminated and does not contain the CR/LF characters sent by the instrument.

1 Note. Always read all data from the KFModuleDIl when handling the event. Otherwise subsequent strings from the
instrument may be missed. This can happen especially when the user application doesn’t react to the events immediately.
See example below:

Thermo Fisher Scientific SPA Ratastie 2 FIN-01621 Vantaa, Finland www.thermo.com

4.2 KFModuleDll.c File Reference 35

void handler_KFMODULE_RECEIVE (HANDLE connection)
{

KFM_ERROR err;
char buf[1001];
while((err = KFModule_ReadReceived(connection, buf, sizeof(buf))) == KFM_ERROR_SUCCESS)

{
// Do something with the data
}

if(err > KFM_ERROR_NO_DATA)
{

// Handle the error
}

Definition at line 2239 of file KFModuleDIl.c.

4.2.2.17 KFM_ERROR WINAPI KFModule_ReadResponse (HANDLE hConn, LPSTR buf, DWORD bufsize)

Parameters
hConn | A handle returned by one of the KFModule_OpenXxx() functions.
buf | Caller’s buffer for the response.
bufsize | Size of the caller’s buffer.
Returns

One of KFM_ERROR codes, KFM_ERROR_SUCCESS if any data was copied to caller’s buffer.

Call this function in response to the KFMODULE_RESPONSE event. The received data is a XML Response. The event
is not sent until a whole XML Response is received. If the caller’s buffer is not large enough to hold the whole response,
a partial response is copied. An empty string is copied when there is no more data to read. The returned string is always
NUL terminated and does not contain the CR/LF characters sent by the instrument.

1 Note. Always read all data from the KFModuleDIl when handling the event. Otherwise subsequent responses may
be missed. This can happen especially when the user application doesn'’t react to the events immediately. See example
below:

void handler_KFMODULE_RESPONSE (HANDLE connection)
{

KFM_ERROR err;
char buf[1001];
while((err = KFModule_ReadResponse(connection, buf, sizeof(buf))) == KFM_ERROR_SUCCESS)

{
// Do something with the data
}

if(err > KFM_ERROR_NO_DATA)
{

// Handle the error
}

Definition at line 2286 of file KFModuleDIl.c.

4.2.2.18 KFM_ERROR WINAPI KFModule_Send (HANDLE hConn, LPCSTR buf)

Parameters

hConn | A handle returned by one of the KFModule_OpenXxx() functions.

buf | I'he NUL terminaied siring to send.
T Fisher Scientific-SPA Ratasti L Fi 3 .

36 File Documentation

Returns

One of KFM_ERROR codes, KFM_ERROR_SUCCESS on success.

Use this function to send commands and acknowledges to the instrument. For uploading and downloading a protocol there
are dedicated functions KFModule_UploadProtocol() and KFModule_DownloadProtocol(). Also connecting/disconnecting
is recommended to be done with separate KFModule_Connect() and KFModule_Disconnect() functions.

The data to be sent to the instrument is buffered in the dil. A KFMODULE_TRANSMIT event is sent to the application when
all data is sent. You may call this function repeatedly without waiting for the event, but a KFM_ERROR_OUT_OF_HEAP
error may be returned if you send a lot of data without waiting for the event.

1 Note. Remember to terminate commands with a new line character (ASCII 10). See interface specification of the
instrument in question for more details.

Definition at line 2495 of file KFModuleDlIl.c.

4.2.2.19 KFM_ERROR WINAPI KFModule_UploadProtocol (HANDLE hConn, LPCSTR protocolName, LPCSTR path)

Parameters

hConn | A handle returned by one of the KFModule_OpenXxx() functions.

protocolName | Name of the protocol to export.

path | Complete path of the .bdz file containing the protocol to export.

Returns

One of KFM_ERROR codes, KFM_ERROR_SUCCESS on success.

The given protocol name must match exactly with a protocol name stored in the .bdz file. The .bdz file may contain several
protocols, but only the requested protocol is sent to the instrument.

1 Note. This funtion returns before the actual transfer is completed, meaning that the return value indicates merely
if the starting of the transfer is succesfull of not. The instrument will send a separate response after the transfer. See
interface specification of the instrument in question for more details.

Definition at line 2600 of file KFModuleDlIl.c.

4.3 KFModuleDIl.h File Reference

Functions exported from KFModule.dll.

Macros

+ #define KFMODULE_RECEIVE 1

Data line received.
« #tdefine KFMODULE_TRANSMIT 2

All data transmitted.
 #define KFMODULE_RESPONSE 4

A response received from KFModule.

Thermo Fisher Scientific SPA Ratastie 2 FIN-01621 Vantaa, Finland www.thermo.com

4.3 KFModuleDILh File Reference 37

« #define KFMODULE_EVENT 8
An event received from KFModule.
« #define KFMODULE_ERROR 16

Fatal error.
- #tdefine KF_PRESTO PID 713

Thermo Fisher Scientific KingFisher Presto product id.

Enumerations

« enum KFM_ERROR {
KFM_ERROR_SUCCESS, KFM_ERROR_NO_DATA, KFM_ERROR_INVALID_HANDLE, KFM_ERROR_INVALI-
D_ARGUMENT,
KFM_ERROR_DISCONNECTED, KFM_ERROR_FILE_NOT_FOUND, KFM_ERROR_INVALID_BDZ_FILE, KFM-
_ERROR_PROTOCOL_NOT_FOUND,
KFM_ERROR_TEMP_FILE_CREATE, KFM_ERROR_EXPORT_IMPORT_BUSY, KFM_ERROR_OUT_OF_HEAP
}

Error codes returned by KFModuleDIl functions.

* enum KFM_SIMULATOR_PORT { KFM_SIMULATOR_USB, KFM_SIMULATOR_COM, KFM_SIMULATOR_DBG,

KFM_SIMULATOR_LAN }

KFModule simulator ports.

Functions

* DIIExport HANDLE WINAPI KFModule_OpenUsb (LPCSTR SerialNumber, WORD productld)

Open an USB communication channel to a KFModule instrument.
* DIIExport HANDLE WINAPI KFModule_OpenSerial (WORD port, DIWORD baud, LPCSTR DeviceName, LPCSTR
SerialNumber)
Open serial communication port to a KFModule instrument.
+ DIIExport HANDLE WINAPI KFModule_OpenLan (LPCSTR DeviceName, LPCSTR SerialNumber, UINT timeout)
Open a LAN communication channel to a KFModule instrument.
+ DIIExport DWORD WINAPI KFModule_ListLanDevices (LPCSTR DeviceName, LPCSTR SerialNumber, LPSTR buf,
DWORD bufsize)
List instruments found on the LAN.
* DIIExport HANDLE WINAPI KFModule_OpenSimulator (KFM_SIMULATOR_PORT port, WORD productld)
Open communication channel to KFModule simulator.
+ DIlIExport KFM_ERROR WINAPI KFModule_Close (HANDLE hConn)
Close a communication channel.
+ DIllExport KFM_ERROR WINAPI KFModule_Connect (HANDLE hConn)
Connect to the instrument.
+ DIlIExport KFM_ERROR WINAPI KFModule_Disconnect (HANDLE hConn)
Disconnect the instrument.
* DIIExport KFM_ERROR WINAPI KFModule_AttachEvent (HANDLE hConn, UINT ev, HANDLE object)
Attach an event object to a KFModule connection.
» DIIExport KFM_ERROR WINAPI KFModule_AttachMsg (HANDLE hConn, HANDLE hWnd, UINT msg, UINT ev)
Attach an event message to the KFModule connection.
+ DIIExport KFM_ERROR WINAPI KFModule_AttachCallback (HANDLE hConn, void(xcallback)(HANDLE conn, UINT
ev))
Attach an event callback function to the KFModule connection.
* DIIExport KFM_ERROR WINAPI KFModule_Send (HANDLE hConn, LPCSTR buf)

Send a NUL terminated ASCII string to the instrument.

Thermo Fisher Scientific SPA Ratastie 2 FIN-01621 Vantaa, Finland www.thermo.com

38

File Documentation

+ DIllExport KFM_ERROR WINAPI KFModule_Abort (HANDLE hConn)
Send Abort command to the instrument.

+ DIllExport KFM_ERROR WINAPI KFModule_ReadReceived (HANDLE hConn, LPSTR buf, DWORD bufsize)
Read a received data line from the received data chain.

+ DIllExport KFM_ERROR WINAPI KFModule_ReadResponse (HANDLE hConn, LPSTR buf, DWORD bufsize)
Read a received XML response from the response chain.

+ DIllExport KFM_ERROR WINAPI KFModule_ReadEvent (HANDLE hConn, LPSTR buf, DWORD bufsize)

Read a received XML event from the event chain.
* DIIExport KFM_ERROR WINAPI KFModule_UploadProtocol (HANDLE hConn, LPCSTR protocolName, LPCSTR
path)
Export the requested protocol to the instrument.
* DIIExport KFM_ERROR WINAPI KFModule_DownloadProtocol (HANDLE hConn, LPCSTR protocolName, LPCSTR
path)
Import the requested protocol to a .badz file.
+ DIllExport KFM_ERROR WINAPI KFModule_GetError (HANDLE hConn)

Get the asynchronous error code.

4.3.1 Detailed Description

Note

Copyright by Thermo Fisher Scientific Oy 2016

Interface to a KingFisher module. Following instruments uses this interface:

+ KingFisher Presto

Definition in file KFModuleDlIl.h.

4.3.2 Macro Definition Documentation

4.3.2.1 #define KF_.PRESTO_PID 713

Definition at line 65 of file KFModuleDIl.h.

43.2.2 fdefine KFMODULE_ERROR 16

Definition at line 28 of file KFModuleDII.h.

4.3.2.3 #define KFMODULE_EVENT 8

Definition at line 27 of file KFModuleDII.h.

4324 #define KFMODULE_RECEIVE 1

Definition at line 24 of file KFModuleDII.h.

4.3.25 #define KFMODULE_RESPONSE 4

Definition at line 26 of file KFModuleDII.h.

Thermo Fisher Scientific SPA Ratastie 2 FIN-01621 Vantaa, Finland www.thermo.com

4.3 KFModuleDILh File Reference

39

4.3.2.6 #define KFMODULE_TRANSMIT 2

Definition at line 25 of file KFModuleDII.h.

4.3.3 Enumeration Type Documentation
4.3.3.1 enum KFM_ERROR

These are the error codes returned by the API functions.

Enumerator

KFM_ERROR_SUCCESS No error.

KFM_ERROR_NO_DATA No more data to return.
KFM_ERROR_INVALID_HANDLE The connection handle is invalid.
KFM_ERROR_INVALID_ARGUMENT Invalid function argument.
KFM_ERROR_DISCONNECTED The instrument is disconnected.
KFM_ERROR_FILE_NOT_FOUND Protocol input or output file not found.
KFM_ERROR_INVALID_BDZ_FILE The given file is not a valid bdz file.

KFM_ERROR_PROTOCOL_NOT_FOUND Requested protocol not found in the given bdz file.

KFM_ERROR_TEMP_FILE_CREATE Failed to create a temporary file.
KFM_ERROR_EXPORT_IMPORT_BUSY Can only execute one Export or Import at a time.
KFM_ERROR_OUT_OF_HEAP Out of heap memory.

Definition at line 34 of file KFModuleDII.h.

4.3.3.2 enum KFM_SIMULATOR_PORT

Enumerator

KFM_SIMULATOR_USB USB port.
KFM_SIMULATOR_COM Serial command port.
KFM_SIMULATOR_DBG Serial debug port.
KFM_SIMULATOR_LAN LAN port.

Definition at line 50 of file KFModuleDlIl.h.

4.3.4 Function Documentation

4.3.4.1 DIIExport KFM_ERROR WINAPI KFModule_Abort (HANDLE hConn)

Parameters

\ hConn \ A handle returned by one of the KFModule_OpenXxx() functions.

Returns

One of KFM_ERROR codes, KFM_ERROR_SUCCESS on success.

Aborts any command(s) being executed in the instrument.

Definition at line 2553 of file KFModuleDIl.c.

Thermo Fisher Scientific SPA Ratastie 2 FIN-01621 Vantaa, Finland www.thermo.com

40 File Documentation

4.3.4.2 DIIExport KFM_ERROR WINAPI KFModule_AttachCallback (HANDLE hConn, void(x)(HANDLE conn, UINT ev) callback)

Parameters

hConn | A handle returned by one of the KFModule_OpenXxx() functions.

callback | Address of the callback function.

Returns

One of KFM_ERROR codes, KFM_ERROR_SUCCESS on success.

The callback function will be called whenever any of events KFMODULE_RECEIVE, KFMODULE_TRANSMIT, KFMOD-
ULE_RESPONSE, KFMODULE_EVENT or KFMODULE_ERROR occurs. The connection handle and the event code are
passed as parameters to the function.

Definition at line 2451 of file KFModuleDll.c.

4.3.4.3 DIIExport KFM_ERROR WINAPI KFModule_AttachEvent (HANDLE hConn, UINT ev, HANDLE object)

Parameters
hConn | A handle returned by one of the KFModule_OpenXxx() functions.
ev | Event(s) to signal.
object | Handle of an event object.
Returns

One of KFM_ERROR codes, KFM_ERROR_SUCCESS on success.

Parameter 'ev’ may be any combination of KFMODULE_RECEIVE, KFMODULE_TRANSMIT, KFMODULE_RESPONSE,
KFMODULE_EVENT and KFMODULE_ERROR. The event object is set to signaled state whenever any of the selected
event(s) occurs.

Parameter 'object’ is a handle of a Windows event object. If NULL, the selected events will not be signaled.

This function may be called repeatedly to set up a different event object for each event. If the same event object is used for
more than one event, the application must check for all possible events after the event object is signalled.

Definition at line 2362 of file KFModuleDlIl.c.

4.3.4.4 DIlIExport KFM_ERROR WINAPI KFModule_AttachMsg (HANDLE hConn, HANDLE hWnd, UINT msg, UINT evCode)

Parameters
hConn | A handle returned by one of the KFModule_OpenXxx() functions.
hWnd | Handle of the window to receive the message.
msg | Message id of the message to send.
evCode | Event(s) for which a message is sent.
Returns

One of KFM_ERROR codes, KFM_ERROR_SUCCESS on success.

A message with message id ‘'msg’ is sent to window ’hWnd’ whenever any of the event(s) selected with parameter ’evCode’
occurs. Parameter ’evCode’ may be any combination of KFMODULE_RECEIVE, KFMODULE_TRANSMIT, KFMODUL-
E_RESPONSE, KFMODULE_EVENT and KFMODULE_ERROR. The wParam of the sent message will be one of these
event codes.

Definition at line 2417 of file KFModuleDlIl.c.

Thermo Fisher Scientific SPA Ratastie 2 FIN-01621 Vantaa, Finland www.thermo.com

4.3 KFModuleDILh File Reference 4

4.3.4.5 DIIExport KFM_ERROR WINAPI KFModule_Close (HANDLE hConn)

Parameters

\ hConn \ A handle returned by one of the KFModule_OpenXxx() functions.

Returns

One of KFM_ERROR codes, KFM_ERROR_SUCCESS on success.

This function should be called when the communication channel is no longer needed. Failing to close the channel prevents
new connections to the channel as long as the dll stays loaded.

1 Note. When using the XML interface, function KFModule_Disconnect() must be called before this function in order to
disconnect the instrument from the open communication channel. Otherwise the instrument may refuse new connections.

Definition at line 2099 of file KFModuleDlIl.c.

4.3.4.6 DIlIExport KFM_ERROR WINAPI KFModule_Connect (HANDLE hConn)

Parameters

\ hConn \ A handle returned by one of the KFModule_OpenXxx() functions.

Returns

One of KFM_ERROR codes, KFM_ERROR_SUCCESS on success.

This function sends the "Connect" command with a current date/time setting to the instrument. It is recommended to use
this function to connect to the instrument so that the calendar of the instrument is always set to the local time automatically.

1 Note. This funtion returns before the actual connection is done, meaning that the return value indicates merely
if the starting of the command is succesfull of not. The instrument will send a separate response after the connection is
finished. See interface specification of the instrument in question for more details.

Definition at line 2133 of file KFModuleDlIl.c.

4.3.4.7 DIIExport KFM_ERROR WINAPI KFModule_Disconnect (HANDLE hConn)

Parameters

\ hConn \ A handle returned by one of the KFModule_OpenXxx() functions.

Returns

One of KFM_ERROR codes, KFM_ERROR_SUCCESS on success.

This function sends the "disconnect" command to the instrument. This is only needed because of the symmetry in the list
of API functions. Disconnect() is the pair to Connect() function.

1

Note. This funtion returns before the actual connection is closed, meaning that the return value indicates merely if

Thermo Fisher Scientific SPA Ratastie 2 FIN-01621 Vantaa, Finland www.thermo.com

42 File Documentation

the starting of the command is succesfull of not. The instrument will send a separate response just before the disconnection.
See interface specification of the instrument in question for more details.

Definition at line 2178 of file KFModuleDlIl.c.

4.3.4.8 DIIExport KFM_ERROR WINAPI KFModule_DownloadProtocol (HANDLE hConn, LPCSTR protocolName, LPCSTR path)

Parameters

hConn | A handle returned by one of the KFModule_OpenXxx() functions.

protocolName | Name of the protocol to export.

path | Complete path of the .bdz file to receive the protocol.

Returns

One of KFM_ERROR codes, KFM_ERROR_SUCCESS on success.

The given protocol name must match exactly with a protocol name stored in the instrument. The dil must have write access
to the given .bdz file. The file will be overwritten by the dll.

1 Note. This funtion returns before the actual transfer is completed, meaning that the return value indicates merely
if the starting of the transfer is succesfull of not. The instrument will send a separate response after the transfer. See
interface specification of the instrument in question for more details.

Definition at line 2627 of file KFModuleDIl.c.

4.3.4.9 DIIExport KFM_ERROR WINAPI KFModule_GetError (HANDLE hConn)

Parameters

\ hConn \ A handle returned by one of the KFModule_OpenXxx() functions.

Returns

One of KFM_ERROR codes, KFM_ERROR_SUCCESS on success.

Most dll functions return an error code, but an error may occur asynchronously in the receive or transmit thread of the dll.
This kind of errors are reported with the KFMODULE_ERROR event. The application should then call this function to read
the error code and take action. The error usually is KFM_ERROR_DISCONNECTED, in which case the application should
close the current connection and try to open a new one.

Definition at line 2673 of file KFModuleDlIl.c.

4.3.4.10 DIIExport DWORD WINAPI KFModule_ListLanDevices (LPCSTR DeviceName, LPCSTR SerialNumber, LPSTR buf, DWORD
bufsize)

Parameters

the found devices are not filtered by the name.

instrumentName | Name of the instrument. Only instruments with a matching name are listed. May be NULL, in which case

NULL, in which case the found devices are not filtered by the serial number.

SerialNumber | The serial number of the instrument. Only instruments with a matching serial number are listed. May be

buf | The buffer to list the found devices to.

bufsize | Size of the buffer in bytes.

Thermo Fisher Scientific SPA Ratastie 2 FIN-01621 Vantaa, Finland www.thermo.com

4.3 KFModuleDILh File Reference 43

Returns

The size in bytes of the complete list of found devices. If the returned value is equal or smaller than the given buffer
size, the buffer contains the complete list of devices found on the LAN. If the returned value is higher than the given
buffer size, no data is returned and the caller must call the function again with big enough buffer. Return value 0 means
that no instruments were found.

On success, the caller’s buffer contains zero terminated strings with a combined length of the return value. The string
terminating zeros are included in the length.

For each found instrument, the first string is the instrument IPv4 address and the TCP port number it is listening, enclosed
in square brackets, e.g. [10.32.196.210:49536].

The IP address string is followed by the WS-Discovery match strings, usually 3 of them. The first one is always 'Thermo-
Device’, the second one is the instrument name and the third one the instrument serial number string.

If the match strings are followed by a string in angle brackets, e.g. <10.32.196.154:57403>, it means that the instrument
is currently connected that IP address and TCP port, and trying to connect to that instrument with function KFModule_-
OpenLan() will fail. If there is no string in square brackets, the instrument will accept a connection.

Definition at line 2000 of file KFModuleDlIl.c.

4.3.4.11 DIIExport HANDLE WINAPI KFModule_OpenLan (LPCSTR DeviceName, LPCSTR SerialNumber, UINT timeout)

Parameters

Discovery Probe and Resolve.

instrumentName | Name of the instrument. This must match the device name the instrument uses for matching a WS--

found KFModule instrument.

SerialNumber | Pointer to the serial number string of the device. The device must report an identical serial number for the
connection to succeed. This parameter may be NULL, in which case the connection is made to the first

timeout.

timeout | Timeout which is used to search the instrument. If 0 is given then WS-Discovery will use default 4 sec

Returns

A handle to the opened communication channel. This handle must be passed to subsequent calls to the other functions
in this library. If the channel could not be opened, NULL is returned.

One of the KFModule_OpenXxx() functions must be called first before using any other functions in the library. Only one
connection per device is allowed.

1 Note. Function KFModule_Connect() must be called after this function in order to use the XML interface to com-
municate with the instrument.

Definition at line 1935 of file KFModuleDIl.c.

4.3.412 DIIExport HANDLE WINAPI KFModule_OpenSerial (WORD port, DWORD baud, LPCSTR DeviceName, LPCSTR SerialNumber
)

Parameters

port | Serial port number.

baud | Serial port baudrate.

ignored.

DeviceName | Pointer to the device name string of the device. The device must report an identical name to the VER
command for the connection to succeed. This parameter may be NULL, in which case the device name is

Thermo Fisher Scientific SPA Ratastie 2 FIN-01621 Vantaa, Finland www.thermo.com

44 File Documentation
SerialNumber | Pointer to the serial number string of the device. The device must report an identical serial number to the
VER command for the connection to succeed. This parameter may be NULL, in which case the serial
number is ignored.
Returns

A handle to the opened communication channel. This handle must be passed to subsequent calls to the other functions
in this library. If the channel could not be opened, NULL is returned.

One of the KFModule_OpenXxx() functions must be called first before using any other functions in the library. Only one
connection per serial port is allowed. If both DeviceName and SerialNumber are NULL, no VER command is sent to the

instrument.

1

Note. Function KFModule_Connect() must be called after this function in order to use the XML interface to com-

municate with the instrument.

Definition at line 1880 of file KFModuleDlIl.c.

4.3.4.13 DIIExport HANDLE WINAPI KFModule_OpenSimulator (KFM_SIMULATOR_PORT port, WORD productld)

Parameters
port | The simulator port to connect to, one of KFM_SIMULATOR_USB, KFM_SIMULATOR_COM, KFM_SIMU-
LATOR_DBG or KFM_SIMULATOR_LAN.
productld | (USB) product id of the instrument.
Returns

A handle to the opened communication channel. This handle must be passed to subsequent calls to the other functions
in this library. If the channel could not be opened, NULL is returned.

One of the KFModule_OpenXxx() functions must be called first before using any other functions in the library. Only one
connection per simulator communication channel is allowed.

1

Note. Function KFModule_Connect() must be called after this function in order to use the XML interface to com-

municate with the instrument.

Definition at line 2030 of file KFModuleDIl.c.

4.3.4.14 DIIExport HANDLE WINAPI KFModule_OpenUsb (LPCSTR SerialNumber, WORD productld)

Parameters

SerialNumber

Pointer to the serial number string of the device. The device must report an identical serial number for the
connection to succeed. This parameter may be NULL, in which case the connection is made to the first
device with matching VendorID and ProductID.

productld

Manufacturer product id number of the USB device.

Returns

A handle to the opened communication channel. This handle must be passed to subsequent calls to the other functions
in this library. If the channel could not be opened, NULL is returned.

Thermo Fisher Scientific SPA Ratastie 2 FIN-01621 Vantaa, Finland www.thermo.com

4.3 KFModuleDILh File Reference 45

One of the KFModule_OpenXxx() functions must be called first before using any other functions in the library. Only one
connection per device is allowed.

1 Note. Function KFModule_Connect() must be called after this function in order to use the XML interface to com-
municate with the instrument.

Definition at line 1827 of file KFModuleDIl.c.

4.3.4.15 DIIExport KFM_ERROR WINAPI KFModule_ReadEvent (HANDLE hConn, LPSTR buf, DWORD bufsize)

Parameters
hConn | A handle returned by one of the KFModule_OpenXxx() functions.
buf | Caller’s buffer for the event.
bufsize | Size of the caller’s buffer.
Returns

One of KFM_ERROR codes, KFM_ERROR_SUCCESS if any data was copied to caller’s buffer.

Call this function in response to the KFMODULE_EVENT event. The received data is a XML Event. The event is not sent
until a whole XML Event is received. If the caller’s buffer is not large enough to hold the whole Event, a partial Event is
copied. An empty string is copied when there is no more data to read. The returned string is always NUL terminated and
does not contain the CR/LF characters sent by the instrument.

1 Note. Always read all data from the KFModuleDIl when handling the event. Otherwise subsequent events from the
instrument may be missed. This can happen especially when the user application doesn’t react to the events immediately.
See example below:

void handler_ KFMODULE_EVENT (HANDLE connection)
{

KFM_ERROR err;
char buf[1001];
while((err = KFModule_ReadEvent (connection, buf, sizeof(buf))) == KFM_ERROR_SUCCESS)

{
// Do something with the data

}
if (err > KFM_ERROR_NO_DATA)

{
// Handle the error

}

Definition at line 2333 of file KFModuleDlIl.c.

4.3.4.16 DIIExport KFM_ERROR WINAPI KFModule_ReadReceived (HANDLE hConn, LPSTR buf, DWORD bufsize)

Parameters

hConn | A handle returned by one of the KFModule_OpenXxx() functions.

buf | Caller’s buffer for the line.

bufsize | Size of the caller’s buffer.

Thermo Fisher Scientific SPA Ratastie 2 FIN-01621 Vantaa, Finland www.thermo.com

46 File Documentation

Returns
One of KFM_ERROR codes, KFM_ERROR_SUCCESS if any data was copied to caller’s buffer.
Call this function in response to the KFMODULE_RECEIVE event. The received data is neither a XML Response nor a

XML Event. An empty string will be copied to caller’s buffer when there is no more data to read. The returned string is
always NUL terminated and does not contain the CR/LF characters sent by the instrument.

1 Note. Always read all data from the KFModuleDIl when handling the event. Otherwise subsequent strings from the
instrument may be missed. This can happen especially when the user application doesn’t react to the events immediately.
See example below:

void handler_KFMODULE_RECEIVE (HANDLE connection)
{

KFM_ERROR err;
char buf[100];
while((err = KFModule_ReadReceived(connection, buf, sizeof(buf))) == KFM_ERROR_SUCCESS)

{
// Do something with the data
}

if(err > KFM_ERROR_NO_DATA)
{

// Handle the error
}

Definition at line 2239 of file KFModuleDlIl.c.

4.3.4.17 DIIExport KFM_ERROR WINAPI KFModule_ReadResponse (HANDLE hConn, LPSTR buf, DWORD bufsize)

Parameters
hConn | A handle returned by one of the KFModule_OpenXxx() functions.
buf | Caller’s buffer for the response.
bufsize | Size of the caller’s buffer.
Returns

One of KFM_ERROR codes, KFM_ERROR_SUCCESS if any data was copied to caller’s buffer.

Call this function in response to the KFMODULE_RESPONSE event. The received data is a XML Response. The event
is not sent until a whole XML Response is received. If the caller’s buffer is not large enough to hold the whole response,
a partial response is copied. An empty string is copied when there is no more data to read. The returned string is always
NUL terminated and does not contain the CR/LF characters sent by the instrument.

1 Note. Always read all data from the KFModuleDIl when handling the event. Otherwise subsequent responses may
be missed. This can happen especially when the user application doesn’t react to the events immediately. See example
below:

void handler_KFMODULE_RESPONSE (HANDLE connection)
{

KFM_ERROR err;
char buf[100];
while((err = KFModule_ReadResponse(connection, buf, sizeof(buf))) == KFM_ERROR_SUCCESS)

{
// Do something with the data

Thermo Fisher Scientific SPA Ratastie 2 FIN-01621 Vantaa, Finland www.thermo.com

4.3 KFModuleDILh File Reference 47

}

if(err > KFM_ERROR_NO_DATA)
{

// Handle the error
}

Definition at line 2286 of file KFModuleDlIl.c.

4.3.4.18 DIIExport KFM_ERROR WINAPI KFModule_Send (HANDLE hConn, LPCSTR buf)

Parameters

hConn | A handle returned by one of the KFModule_OpenXxx() functions.

buf | The NUL terminated string to send.

Returns

One of KFM_ERROR codes, KFM_ERROR_SUCCESS on success.

Use this function to send commands and acknowledges to the instrument. For uploading and downloading a protocol there
are dedicated functions KFModule_UploadProtocol() and KFModule_DownloadProtocol(). Also connecting/disconnecting
is recommended to be done with separate KFModule_Connect() and KFModule_Disconnect() functions.

The data to be sent to the instrument is buffered in the dll. A KFMODULE_TRANSMIT event is sent to the application when
all data is sent. You may call this function repeatedly without waiting for the event, but a KFM_ERROR_OUT_OF_HEAP
error may be returned if you send a lot of data without waiting for the event.

1 Note. Remember to terminate commands with a new line character (ASCII 10). See interface specification of the
instrument in question for more details.

Definition at line 2495 of file KFModuleDIl.c.

4.3.4.19 DIIExport KFM_ERROR WINAPI KFModule_UploadProtocol (HANDLE hConn, LPCSTR protocolName, LPCSTR path)

Parameters

hConn | A handle returned by one of the KFModule_OpenXxx() functions.

protocolName | Name of the protocol to export.

path | Complete path of the .bdz file containing the protocol to export.

Returns

One of KFM_ERROR codes, KFM_ERROR_SUCCESS on success.

The given protocol name must match exactly with a protocol name stored in the .bdz file. The .bdz file may contain several
protocols, but only the requested protocol is sent to the instrument.

1 Note. This funtion returns before the actual transfer is completed, meaning that the return value indicates merely
if the starting of the transfer is succesfull of not. The instrument will send a separate response after the transfer. See
interface specification of the instrument in question for more details.

Definition at line 2600 of file KFModuleDlIl.c.

Thermo Fisher Scientific SPA Ratastie 2 FIN-01621 Vantaa, Finland www.thermo.com

48 File Documentation

4.4 mainpage.h File Reference

KFModuleDII Interface Specification.

Thermo Fisher Scientific SPA Ratastie 2 FIN-01621 Vantaa, Finland www.thermo.com

Index

api.h, 27

KFM_ERROR_DISCONNECTED
KFModuleDIlLh, 39
KFM_ERROR_EXPORT_IMPORT_BUSY
KFModuleDIlLh, 39
KFM_ERROR_FILE_NOT_FOUND
KFModuleDIlLh, 39
KFM_ERROR_INVALID_ARGUMENT
KFModuleDIlLh, 39
KFM_ERROR_INVALID BDZ_FILE
KFModuleDIlLh, 39
KFM_ERROR_INVALID_HANDLE
KFModuleDlIlLh, 39
KFM_ERROR_NO_DATA
KFModuleDILh, 39
KFM_ERROR_OUT OF HEAP
KFModuleDILh, 39
KFM_ERROR_PROTOCOL_NOT_FOUND
KFModuleDIlLh, 39
KFM_ERROR_SUCCESS
KFModuleDIlLh, 39
KFM_ERROR_TEMP_FILE_CREATE
KFModuleDIlLh, 39
KFM_SIMULATOR_COM
KFModuleDIlh, 39
KFM_SIMULATOR_DBG
KFModuleDIlLh, 39
KFM_SIMULATOR_LAN
KFModuleDILh, 39
KFM_SIMULATOR_USB
KFModuleDILh, 39
KFModuleDIl.h
KFM_ERROR_DISCONNECTED, 39

KFM_ERROR_EXPORT_IMPORT _BUSY, 39

KFM_ERROR_FILE_NOT_FOUND, 39

KFM_ERROR_INVALID_ARGUMENT, 39
KFM_ERROR_INVALID_BDZ_FILE, 39

KFM_ERROR_INVALID_HANDLE, 39
KFM_ERROR_NO_DATA, 39
KFM_ERROR_OUT_OF_HEAP, 39

KFM_ERROR_PROTOCOL_NOT_FOUND, 39

KFM_ERROR_SUCCESS, 39

KFM_ERROR_TEMP_FILE_CREATE, 39

KFM_SIMULATOR_COM, 39
KFM_SIMULATOR_DBG, 39
KFM_SIMULATOR_LAN, 39
KFM_SIMULATOR_USB, 39

KF_PRESTO_PID
KFModuleDIl.h, 38
KFM_ERROR
KFModuleDlIl.h, 39
KFM_SIMULATOR_PORT
KFModuleDlIl.h, 39
KFMODULE_ERROR
KFModuleDIl.h, 38
KFMODULE_EVENT
KFModuleDIl.h, 38
KFMODULE_RECEIVE
KFModuleDIl.h, 38
KFMODULE_RESPONSE
KFModuleDIl.h, 38
KFMODULE_TRANSMIT
KFModuleDIl.h, 38
KFModule Abort
KFModuleDll.c, 28
KFModuleDll.h, 39
KFModule_AttachCallback
KFModuleDll.c, 28
KFModuleDll.h, 39
KFModule_AttachEvent
KFModuleDll.c, 29
KFModuleDlIl.h, 40
KFModule_AttachMsg
KFModuleDll.c, 29
KFModuleDlIl.h, 40
KFModule_Close
KFModuleDll.c, 29
KFModuleDlIl.h, 40
KFModule Connect
KFModuleDIl.c, 30
KFModuleDlIl.h, 41
KFModule_Disconnect
KFModuleDll.c, 30
KFModuleDlIl.h, 41
KFModule_DownloadProtocol
KFModuleDll.c, 30
KFModuleDlIl.h, 42
KFModule_GetError
KFModuleDll.c, 31
KFModuleDlIl.h, 42
KFModule_ListLanDevices
KFModuleDll.c, 31
KFModuleDlIl.h, 42
KFModule_OpenLan

50

INDEX

KFModuleDll.c, 32
KFModuleDIl.h, 43
KFModule_OpenSerial
KFModuleDll.c, 32
KFModuleDIl.h, 43
KFModule_OpenSimulator
KFModuleDll.c, 33
KFModuleDIl.h, 44
KFModule_OpenUsb
KFModuleDll.c, 33
KFModuleDIl.h, 44
KFModule ReadEvent
KFModuleDll.c, 33
KFModuleDIl.h, 45
KFModule ReadReceived
KFModuleDll.c, 34
KFModuleDIl.h, 45
KFModule_ReadResponse
KFModuleDll.c, 35
KFModuleDIl.h, 46
KFModule_Send
KFModuleDll.c, 35
KFModuleDlIl.h, 47
KFModule_UploadProtocol
KFModuleDll.c, 36
KFModuleDIl.h, 47
KFModuleDll.c, 27
KFModule_Abort, 28
KFModule_AttachCallback, 28
KFModule_AttachEvent, 29
KFModule_AttachMsg, 29
KFModule_Close, 29
KFModule_Connect, 30
KFModule_Disconnect, 30
KFModule_DownloadProtocol, 30
KFModule_GetError, 31
KFModule_ListLanDevices, 31
KFModule_OpenLan, 32
KFModule_OpenSerial, 32
KFModule_OpenSimulator, 33
KFModule_OpenUsb, 33
KFModule ReadEvent, 33
KFModule _ReadReceived, 34
KFModule_ReadResponse, 35
KFModule_Send, 35
KFModule_UploadProtocol, 36
KFModuleDIl.h, 36
KF_PRESTO_PID, 38
KFM_ERROR, 39
KFMODULE_ERROR, 38
KFMODULE_EVENT, 38
KFMODULE_RECEIVE, 38
KFMODULE_RESPONSE, 38
KFMODULE_TRANSMIT, 38
KFModule_Abort, 39
KFModule_AttachCallback, 39

KFModule_AttachEvent, 40
KFModule_AttachMsg, 40
KFModule_Close, 40
KFModule_Connect, 41
KFModule Disconnect, 41
KFModule_DownloadProtocol, 42
KFModule_GetError, 42
KFModule_ListLanDevices, 42
KFModule_OpenLan, 43
KFModule_OpenSerial, 43
KFModule_OpenSimulator, 44
KFModule_OpenUsb, 44
KFModule ReadEvent, 45
KFModule _ReadReceived, 45
KFModule_ReadResponse, 46
KFModule_Send, 47
KFModule_UploadProtocol, 47

mainpage.h, 48

Thermo Fisher Scientific SPA Ratastie 2 FIN-01621 Vantaa, Finland www.thermo.com

ThermoUSB.dII

Interface Specification

Contents

1 ThermoUSB dIl Interface Specification

2 Using ThermoUSB

2.1
2.2

ADOUL . . L e e e e
Exported functions L e e e
221 ThermoUSBOPEN o o e e
2.22 ThermoUSBCIose e
2.2.3 ThermoUSBAttachEvent e
2.24 ThermoUSBAttachMsg e e
225 ThermoUSBRead e e e
2.2.6 ThermoUSBReadBinary i i i it e e
2.27 ThermoUSBWrite e e
2.2.8 ThermoUSBWriteBinary e e
2.29 ThermoUSBGetError e e e e
2.2.10 ThermoUSBADboOrt e e e e
2.2.11 ThermoUSBGetThermoVendorld . e

3 File Index

3.1

File List o e

4 File Documentation

4.1
4.2
4.3

4.4

api.h File Reference e
mainpage.h File Reference e
ThermoUSB.c File Reference e
4.3.1 Detailed Description e e e
4.3.2 Function Documentation e
4.3.21 ThermoUSBAbort e e e e
4322 ThermoUSBAttachEvent e
43.23 ThermoUSBAttachMsg e e e e e
4324 ThermoUSBCIoSe o o o e e e e e e
4.3.25 ThermoUSBGetError e e e e e e
4.3.2.6 ThermoUSBGetThermoVendorld o o o e
43.27 ThermoUSBOpen e e e e
4.3.2.8 ThermoUSBRead e e e e e e e e e e e
4.3.2.9 ThermoUSBReadBinary o e e e e
43210 ThermoUSBWrite e e e e e e e e e e e e
4.3.2.11 ThermoUSBWriteBinary e
ThermoUSB.h File Reference e e e
4.41 Detailed Description e
4.4.2 Macro Definition Documentation L e
4.4.21 THERMOUSB_ERROR e e e e e e s e e e e e e e
4422 THERMOUSB_RECEIVE e e e e e e e e e e e e
4423 THERMOUSB_TRANSMIT e e e e e e e e e e e e e e e e e s
4.4.3 Function Documentation e e e e e e
4431 ThermoUSBAbort o e e e e e

4432 ThermoUSBAttachEvent e e e e e e e e e

ii CONTENTS
4433 ThermoUSBAttachMsg e e e e e 25
4434 ThermoUSBCIlose L e e e e e e e 26
4435 ThermoUSBGetError e e e 26
4.43.6 ThermoUSBGetThermoVendorld o o e 26
4.43.7 ThermoUSBOpen o e e e e e 26
4438 ThermoUSBRead e e e e e e e e e e 27
4.4.3.9 ThermoUSBReadBinary o e e e e e e 27
44310 ThermoUSBWrite L e e e e e e e 27
4.43.11 ThermoUSBWriteBinary e e e 27

Thermo Fisher Scientific SPA Ratastie 2 FIN-01621 Vantaa, Finland www.thermo.com

Chapter 1

ThermoUSB dll Interface Specification

About

The purpose of the ThermoUSB.dIl dynamic link library is to make interface to the Thermo microplate instruments easy.
The user of the ThermoUSB.dIl does not have to know the details of USB communication. Knowing the USB Product Id of
the instrument is enough.

Confidential

This document has been prepared by Thermo Fisher Scientific Oy to be used solely for the purposes defined by Thermo
Fisher Scientific Oy. Use for other purposes is not authorized.

Please note that any and all information contained in this document is the property of Thermo Fisher Scientific Oy. This
confidential information ("Confidential Information") shall not be reproduced in whole part or disclosed to any third party
without the prior written approval of Thermo Fisher Scientific Oy. The receiving party shall ensure that it's employees,
officers, representatives and agents shall not disclose to third parties any Confidential Information.

Upon written request from Thermo Fisher Scientific Oy, the receiving party shall promptly return all Confidential Information
or destroy all Confidential Information.

ThermoUSB dll Interface Specification

Thermo Fisher Scientific SPA Ratastie 2 FIN-01621 Vantaa, Finland www.thermo.com

Chapter 2

Using ThermoUSB

2.1 About

Because it is not trivial to write PC software from scratch to communicate with the instrument, the ThermoUSB Dynamic
Link Library is provided. It hides much of the complexity of the communication.

ThermoUSB.dIl is a generic library for communicating with several different Thermo Scientific microplate instruments. To
communicate with an instrument you use the exported functions of ThermoUSB.dII.

Depending on your project setup, you may find useful a couple of other files which are also provided. The header file
ThermoUSB.h contains the prototypes of the exported functions and definitions of constant values used by the dll. File
ThermoUSB.lib contains information about the dll the linker uses to add references to the library in the executable. This
way the dll is automatically loaded and the exported functions of the library can be called as easy as the functions in the
code using the dll.

4 Using ThermoUSB

2.2 Exported functions

* ThermoUSBOpen

» ThermoUSBClose

* ThermoUSBAttachEvent
» ThermoUSBAttachMsg
* ThermoUSBRead

» ThermoUSBReadBinary
* ThermoUSBWrite

» ThermoUSBWriteBinary
* ThermoUSBGetError

* ThermoUSBAbort

* ThermoUSBGetThermoVendorld

Thermo Fisher Scientific SPA Ratastie 2 FIN-01621 Vantaa, Finland www.thermo.com

2.2 Exported functions

2.2.1 ThermoUSBOpen

Search for the requested USB device and open a communication channel to it. Full declaration: ThermoUSBOpen().

Parameters

VendorlD

The USB vendor id of the device manufacturer, 0x0AB6 for Thermo Fisher Scientific Oy.

ProductID

Product id number of the device.

SerialNumber

Pointer to the serial number string of the device. The device must report an identical serial number for the
connection to succeed. This parameter may be NULL, in which case the connection is made to the first
device with matching VendorID and ProductID.

Returns

A handle to the opened communication channel. This handle must be passed to subsequent calls to the other functions
in this library. If the channel could not be opened, NULL is returned.

This function (or ThermoUSBOpenSimulator) must be called first before using any other functions in the library. Only one
connection per device is allowed.

Thermo Fisher Scientific SPA Ratastie 2 FIN-01621 Vantaa, Finland www.thermo.com

6 Using ThermoUSB

2.2.2 ThermoUSBClose

Close an USB connection. Full declaration: ThermoUSBClose().

Parameters

\ hConn \ Connection handle returned form a call to ThermoUSBOpen()

Closes the communication channel to the instrument. This function should be called when the application has finished
communicating with the instrument. It is not possible to open a communication channel to the instrument while the previous
channel is still open. When the dll is unloaded from the memory, all channels still open are automatically closed.

Thermo Fisher Scientific SPA Ratastie 2 FIN-01621 Vantaa, Finland www.thermo.com

2.2 Exported functions 7

2.2.3 ThermoUSBAttachEvent

Attach an event object to an USB connection. Full declaration: ThermoUSBAttachEvent().

Parameters

hConn | Connection handle returned form a call to ThermoUSBOpen() (pointer to a USB_CONNECTION structure).

evCode | Event(s) to signal.

object | Handle of an event object.

Parameter 'evCode’ may be any combination of THERMOUSB_RECEIVE, THERMOUSB_TRANSMIT and THERMOUS-
B_ERROR. The event object is set to signaled state whenever any of the selected event(s) occurs.

Parameter 'object’ is a handle of a Windows event object. If NULL, the selected events will not be signaled.
This function may be called repeatedly to set up a different event object for each event.

The THERMOUSB_RECEIVE event is signaled whenever something is written to the receive buffer. There is no quarantee
that a whole response line is received or that only one response line is received. therefore upon receiving this event the
application should call ThermoUSBRead() or ThermoUSBReadBinary as long as they return data.

The THERMOUSB_TRANSMIT event is signaled when the last data from the transmit buffer is sent. It can be used as
flow control: If new data is not sent untii THERMOUSB_TRANSMIT event is received, functions ThermoUSBWrite() and
ThermoUSBWriteBinary() will never fail.

Thermo Fisher Scientific SPA Ratastie 2 FIN-01621 Vantaa, Finland www.thermo.com

Using ThermoUSB

2.24 ThermoUSBAttachMsg

Attach an event message to an USB connection. Full declaration: ThermoUSBAttachMsg().

Parameters

hConn

Connection handle returned form a call to ThermoUSBOpen() (pointer to a USB_CONNECTION structure).

hWnd

Handle of the window to receive the message.

msg

Message id of the message to send.

event

Event(s) for which a message is sent.

A message with message id ‘'msg’ is sent to window 'hWnd’ whenever any of the event(s) selected with parameter ’ev-
Code’ occurs. Parameter ’evCode’ may be any combination of THERMOUSB_RECEIVE, THERMOUSB_TRANSMIT and
THERMOUSB_ERROR. The event code is passed in the wParam member of the sent Windows message.

The THERMOUSB_RECEIVE event is sent whenever something is written to the receive buffer. There is no quarantee
that a whole response line is received or that only one response line is received. Therefore upon receiving this event the
application should call ThermoUSBRead() or ThermoUSBReadBinary as long as they return data.

The THERMOUSB_TRANSMIT event is sent when the last data from the transmit buffer is sent. It can be used as
flow control: If new data is not sent untii THERMOUSB_TRANSMIT event is received, functions ThermoUSBWrite() and
ThermoUSBWriteBinary() will never fail.

Thermo Fisher Scientific SPA Ratastie 2 FIN-01621 Vantaa, Finland www.thermo.com

2.2 Exported functions 9

2.2.5 ThermoUSBRead

Read a received response line. Full declaration: ThermoUSBRead().

Parameters
hConn | Handle of the USB connection. This must be a handle returned from ThermoUSBOpen().
buf | Pointer to a buffer to receive the response.
bufsize | Size of the buffer in bytes.
Returns

TRUE if a response line was retrieved, else FALSE.

Use this function to read full response lines returned from the instrument. The response line is returned without the
terminating CRLF. Therefore TRUE may be returned even if the resulting line is empty. The returned line always ends to
the NUL character even if FALSE is returned.

If the caller’s buffer is too small to hold the whole response line, as much as fits to the buffer is returned and the rest is
returned on subsequent call(s).

Thermo Fisher Scientific SPA Ratastie 2 FIN-01621 Vantaa, Finland www.thermo.com

10 Using ThermoUSB

2.2.6 ThermoUSBReadBinary

Read data received from the USB device. Full declaration: ThermoUSBReadBinary().

Parameters
hConn | Handle of the USB connection. This must be a handle returned from ThermoUSBOpen().
buf | Pointer to buffer receiving the data.
bufsize | Size of the buffer in bytes.
Returns

Number of bytes copied to the user buffer.

Unlike function ThermoUSBRead(), this function returns all data received from the instrument without doing any interpre-
tation on it. You can control the number of bytes returned with the bufsize parameter.

If the return value is less than the given bufsize parameter, there is no more data.

Thermo Fisher Scientific SPA Ratastie 2 FIN-01621 Vantaa, Finland www.thermo.com

2.2 Exported functions 11

2.2.7 ThermoUSBWrite

Write a string to the transmit buffer. Full declaration: ThermoUSBWrite().

Parameters

hConn | Handle of the USB connection. This must be a handle returned from ThermoUSBOpen().

buf | Buffer containing the ASCIIZ string to send.

Returns

TRUE if the string was written to the transmit buffer, else FALSE.

If the whole string does not fit in the transmit buffer, writes nothing and returns FALSE. The application may retry at a later
time.

Thermo Fisher Scientific SPA Ratastie 2 FIN-01621 Vantaa, Finland www.thermo.com

12 Using ThermoUSB

2.2.8 ThermoUSBWriteBinary

Write binary data to the transmit buffer. Full declaration: ThermoUSBWriteBinary().

Parameters
hConn | Handle of the USB connection. This must be a handle returned from ThermoUSBOpen().
buf | Buffer containing the data to send.
count | Number of bytes to send.
Returns

TRUE if the data was written to the transmit buffer, else FALSE.

If all data does not fit in the transmit buffer, writes nothing and returns FALSE. The application may retry at a later time.

Thermo Fisher Scientific SPA Ratastie 2 FIN-01621 Vantaa, Finland www.thermo.com

2.2 Exported functions

13

2.2.9 ThermoUSBGetError

Return the error code stored to the connection structure. Full declaration: ThermoUSBGetError().

Thermo Fisher Scientific SPA Ratastie 2 FIN-01621 Vantaa, Finland www.thermo.com

14 Using ThermoUSB

2.2.10 ThermoUSBAbort

Send Abort command to the device. Full declaration: ThermoUSBAbort().

Parameters

\ hConn \ Handle of the USB connection. This must be a handle returned from ThermoUSBOpen().

Thermo Fisher Scientific SPA Ratastie 2 FIN-01621 Vantaa, Finland www.thermo.com

2.2 Exported functions

15

2.2.11 ThermoUSBGetThermoVendorld

Return Thermo Fisher Scientific Oy USB vendor id. Full declaration: ThermoUSBGetThermoVendorld().

Returns

Thermo Fisher Scientific Oy USB vendor id, 0x0OAB6.

Thermo Fisher Scientific SPA Ratastie 2 FIN-01621 Vantaa, Finland www.thermo.com

16

Using ThermoUSB

Thermo Fisher Scientific SPA Ratastie 2 FIN-01621 Vantaa, Finland www.thermo.com

Chapter 3

File Index

3.1

File List

Here is a list of all files with brief descriptions:

api.h

Part of ThermoUSB dll documentation L 19
mainpage.h

Start page of ThermoUSB.dIl Design Description 19
ThermoUSB.c

Implements USB interface to Thermo microplate instruments using either Windows HID driver or the

libusb-win32 driver from http://libusb-win32.sourceforge.net 19

ThermoUSB.h
Functions exported from ThermoUSB.dIl 23

http://libusb-win32.sourceforge.net

18

File Index

Thermo Fisher Scientific SPA Ratastie 2 FIN-01621 Vantaa, Finland www.thermo.com

Chapter 4

File Documentation

4.1 api.h File Reference

Part of ThermoUSB dIl documentation.

4.2 mainpage.h File Reference

Start page of ThermoUSB.dII Design Description.

4.3 ThermoUSB.c File Reference

Implements USB interface to Thermo microplate instruments using either Windows HID driver or the libusb-win32 driver
fromhttp://libusb-win32.sourceforge.net.

Functions

+ HANDLE WINAPI ThermoUSBOpen (WORD VendorID, WORD ProductID, LPCSTR SerialNumber)

Search for the requested USB device and open a communication channel to it.
+ void WINAPI ThermoUSBClose (HANDLE hConn)

Close an USB connection.
+ BOOL WINAPI ThermoUSBAttachEvent (HANDLE hConn, UINT evCode, HANDLE object)

Attach an event object to an USB connection.
+ BOOL WINAPI ThermoUSBAttachMsg (HANDLE hConn, HANDLE hWnd, UINT msg, UINT evCode)

Attach an event message to an USB connection.
+ BOOL WINAPI ThermoUSBRead (HANDLE hConn, LPSTR buf, DWORD bufsize)

Read a received response line.
+ DWORD WINAPI ThermoUSBReadBinary (HANDLE hConn, LPSTR buf, DWORD bufsize)

Read data received from the USB device.
+ BOOL WINAPI ThermoUSBWrite (HANDLE hConn, LPCSTR buf)

Write a string to the transmit buffer.
+ BOOL WINAPI ThermoUSBWriteBinary (HANDLE hConn, LPCSTR buf, DWORD count)

Write binary data to the transmit buffer.
+ void WINAPI ThermoUSBAbort (HANDLE hConn)

Send Abort command to the device.

http://libusb-win32.sourceforge.net

20 File Documentation

« DWORD WINAPI ThermoUSBGetError (HANDLE hConn)

Return the error code stored to the connection structure.
+ WORD WINAPI ThermoUSBGetThermoVendorld (void)

Return Thermo Fisher Scientific Oy USB vendor id.

4.3.1 Detailed Description
Note

Copyright by Thermo Fisher Scientific Oy 2015

Definition in file ThermoUSB.c.

4.3.2 Function Documentation

4.3.2.1 void WINAPI ThermoUSBAbort (HANDLE hConn)

Parameters

hConn \ Handle of the USB connection. This must be a handle returned from ThermoUSBOpen().

Definition at line 2241 of file ThermoUSB.c.

4.3.2.2 BOOL WINAPI ThermoUSBAttachEvent (HANDLE hConn, UINT evCode, HANDLE object)

Parameters

hConn | Connection handle returned form a call to ThermoUSBOpen() (pointer to a USB_CONNECTION structure).

evCode | Event(s) to signal.

object | Handle of an event object.

Parameter 'evCode’ may be any combination of THERMOUSB_RECEIVE, THERMOUSB_TRANSMIT and THERMOUS-
B_ERROR. The event object is set to signaled state whenever any of the selected event(s) occurs.

Parameter ’object’ is a handle of a Windows event object. If NULL, the selected events will not be signaled.
This function may be called repeatedly to set up a different event object for each event.

The THERMOUSB_RECEIVE event is signaled whenever something is written to the receive buffer. There is no quarantee
that a whole response line is received or that only one response line is received. therefore upon receiving this event the
application should call ThermoUSBRead() or ThermoUSBReadBinary as long as they return data.

The THERMOUSB_TRANSMIT event is signaled when the last data from the transmit buffer is sent. It can be used as
flow control: If new data is not sent untii THERMOUSB_TRANSMIT event is received, functions ThermoUSBWrite() and
ThermoUSBWriteBinary() will never fail.

Definition at line 1853 of file ThermoUSB.c.

4.3.2.3 BOOL WINAPI ThermoUSBAttachMsg (HANDLE hConn, HANDLE hWnd, UINT msg, UINT evCode)

Parameters

hConn | Connection handle returned form a call to ThermoUSBOpen() (pointer to a USB_CONNECTION structure).

hWhnd | Handle of the window to receive the message.

msg | Message id of the message to send.

event | Event(s) for which a message is sent.

Thermo Fisher Scientific SPA Ratastie 2 FIN-01621 Vantaa, Finland www.thermo.com

4.3 ThermoUSB.c File Reference 21

A message with message id ‘'msg’ is sent to window 'hWnd’ whenever any of the event(s) selected with parameter ’ev-
Code’ occurs. Parameter ’evCode’ may be any combination of THERMOUSB_RECEIVE, THERMOUSB_TRANSMIT and
THERMOUSB_ERROR. The event code is passed in the wParam member of the sent Windows message.

The THERMOUSB_RECEIVE event is sent whenever something is written to the receive buffer. There is no quarantee
that a whole response line is received or that only one response line is received. Therefore upon receiving this event the
application should call ThermoUSBRead() or ThermoUSBReadBinary as long as they return data.

The THERMOUSB_TRANSMIT event is sent when the last data from the transmit buffer is sent. It can be used as
flow control: If new data is not sent untii THERMOUSB_TRANSMIT event is received, functions ThermoUSBWrite() and
ThermoUSBWriteBinary() will never fail.

Definition at line 1908 of file ThermoUSB.c.

4.3.2.4 void WINAPI ThermoUSBClose (HANDLE hConn)

Parameters

\ hConn \ Connection handle returned form a call to ThermoUSBOpen()

Closes the communication channel to the instrument. This function should be called when the application has finished
communicating with the instrument. It is not possible to open a communication channel to the instrument while the previous
channel is still open. When the dll is unloaded from the memory, all channels still open are automatically closed.

Definition at line 1767 of file ThermoUSB.c.

4.3.2.5 DWORD WINAPI ThermoUSBGetError (HANDLE hConn)

Parameters

\ hConn \ Handle of the USB connection. This must be a handle returned from ThermoUSBOpen().

Returns

The current Windows error code stored for the connection.

Error conditions may be encountered asynchronously and not just as a direct result of a function call to the dll. Therefore
the application should enable error reporting with ThermoUSBAttachEvent() or ThermoUSBAttachMsg(). When an error
is reported to the application, it may call this function to get the Windows error code, which may or may not be helpful in
resolving the problem. In general, if an error is reported then some receive or transmit data is lost, and the best way of
action is to close the port and then retry opening it again.

A call to ThermoUSBGetError() resets the stored error code to ERROR_SUCCESS.
Definition at line 2308 of file ThermoUSB.c.

4.3.2.6 WORD WINAPI ThermoUSBGetThermoVendorld (void)

Returns

Thermo Fisher Scientific Oy USB vendor id, 0XOAB6.

Definition at line 2332 of file ThermoUSB.c.

4.3.2.7 HANDLE WINAPI ThermoUSBOpen (WORD VendorID, WORD ProductiD, LPCSTR SerialNumber)

Parameters

\ VendorID \ The USB vendor id of the device manufacturer, 0XOAB6 for Thermo Fisher Scientific Oy.

Thermo Fisher Scientific SPA Ratastie 2 FIN-01621 Vantaa, Finland www.thermo.com

22 File Documentation

ProductID | Product id number of the device.

SerialNumber | Pointer to the serial number string of the device. The device must report an identical serial number for the
connection to succeed. This parameter may be NULL, in which case the connection is made to the first
device with matching VendorID and ProductID.

Returns

A handle to the opened communication channel. This handle must be passed to subsequent calls to the other functions
in this library. If the channel could not be opened, NULL is returned.

This function (or ThermoUSBOpenSimulator) must be called first before using any other functions in the library. Only one

connection per device is allowed.

Definition at line 1738 of file ThermoUSB.c.

4.3.2.8 BOOL WINAPI ThermoUSBRead (HANDLE hConn, LPSTR buf, DWORD bufsize)

Parameters
hConn | Handle of the USB connection. This must be a handle returned from ThermoUSBOpen().
buf | Pointer to a buffer to receive the response.
bufsize | Size of the buffer in bytes.
Returns

TRUE if a response line was retrieved, else FALSE.

Use this function to read full response lines returned from the instrument. The response line is returned without the
terminating CRLF. Therefore TRUE may be returned even if the resulting line is empty. The returned line always ends to
the NUL character even if FALSE is returned.

If the caller’'s buffer is too small to hold the whole response line, as much as fits to the buffer is returned and the rest is
returned on subsequent call(s).

Definition at line 1948 of file ThermoUSB.c.

4.3.29 DWORD WINAPI ThermoUSBReadBinary (HANDLE hConn, LPSTR buf, DWORD bufsize)

Parameters
hConn | Handle of the USB connection. This must be a handle returned from ThermoUSBOpen().
buf | Pointer to buffer receiving the data.
bufsize | Size of the buffer in bytes.
Returns

Number of bytes copied to the user buffer.

Unlike function ThermoUSBRead(), this function returns all data received from the instrument without doing any interpre-
tation on it. You can control the number of bytes returned with the bufsize parameter.

If the return value is less than the given bufsize parameter, there is no more data.

Definition at line 2123 of file ThermoUSB.c.

Thermo Fisher Scientific SPA Ratastie 2 FIN-01621 Vantaa, Finland www.thermo.com

4.4 ThermoUSB.h File Reference 23

4.3.2.10 BOOL WINAPI ThermoUSBWrite (HANDLE hConn, LPCSTR buf)

Parameters

hConn | Handle of the USB connection. This must be a handle returned from ThermoUSBOpen().

buf | Buffer containing the ASCIIZ string to send.

Returns

TRUE if the string was written to the transmit buffer, else FALSE.
If the whole string does not fit in the transmit buffer, writes nothing and returns FALSE. The application may retry at a later

time.

Definition at line 2169 of file ThermoUSB.c.

4.3.2.11 BOOL WINAPI ThermoUSBWriteBinary (HANDLE hConn, LPCSTR buf, DWORD count)

Parameters
hConn | Handle of the USB connection. This must be a handle returned from ThermoUSBOpen().
buf | Buffer containing the data to send.
count | Number of bytes to send.
Returns

TRUE if the data was written to the transmit buffer, else FALSE.

If all data does not fit in the transmit buffer, writes nothing and returns FALSE. The application may retry at a later time.

Definition at line 2190 of file ThermoUSB.c.

4.4 ThermoUSB.h File Reference

Functions exported from ThermoUSB.dI.

Macros

* #define THERMOUSB_RECEIVE 1

Data received.
» #define THERMOUSB_TRANSMIT 2

All data transmitted.
» #define THERMOUSB ERROR 4

Fatal error event.

Functions

+ DIlIExport HANDLE WINAPI ThermoUSBOpen (WORD VendorID, WORD ProductID, LPCSTR SerialNumber)

Search for the requested USB device and open a communication channel to it.
* DIIExport void WINAPI ThermoUSBClose (HANDLE hConn)

Close an USB connection.
+ DIlIExport BOOL WINAPI ThermoUSBAttachEvent (HANDLE hConn, UINT evCode, HANDLE object)

Attach an event object to an USB connection.

Thermo Fisher Scientific SPA Ratastie 2 FIN-01621 Vantaa, Finland www.thermo.com

24 File Documentation

+ DIIExport BOOL WINAPI ThermoUSBAttachMsg (HANDLE hConn, HANDLE hWnd, UINT msg, UINT event)

Attach an event message to an USB connection.
* DIIExport BOOL WINAPI ThermoUSBRead (HANDLE hConn, LPSTR buf, DIWORD bufsize)

Read a received response line.
+ DIlExport DWORD WINAPI ThermoUSBReadBinary (HANDLE hConn, LPSTR buf, DWORD bufsize)

Read data received from the USB device.
 DIIExport BOOL WINAPI ThermoUSBWrite (HANDLE hConn, LPCSTR buf)

Write a string to the transmit buffer.
+ DIlIExport BOOL WINAPI ThermoUSBWriteBinary (HANDLE hConn, LPCSTR buf, DWORD count)

Write binary data to the transmit buffer.
+ DIlExport DWORD WINAPI ThermoUSBGetError (HANDLE hConn)

Return the error code stored to the connection structure.
* DIIExport void WINAPI ThermoUSBAbort (HANDLE hConn)

Send Abort command to the device.
+ DIIExport WORD WINAPI ThermoUSBGetThermoVendorld (void)

Return Thermo Fisher Scientific Oy USB vendor id.

441 Detailed Description
Note

Copyright by Thermo Fisher Scientific Oy 2015

USB interface to Thermo microplate instruments.

Definition in file ThermoUSB.h.

4.4.2 Macro Definition Documentation
4.4.2.1 #define THERMOUSB_ERROR 4
In case of error the application receives an error event or an error message. The application may query the error code with

function ThermoUSBGetError(). If the device is a HID device, the error code may be any of the Windows error codes. In
case of a libusb-win32 device, the error code from libusb driver is translated to one of the following Windows error codes:

Windows error Code Description
ERROR_SUCCESS 0 No error.
ERROR_ACCESS_DENIED 5 I/O error.
ERROR_NOT_ENOUGH_MEMORY | 12 Not enough memory.
ERROR_BAD_COMMAND 22 Invalid parameter.
WAIT_TIMEOUT 116 A transfer timed out.

What the application can do in case of an error is to first call ThermoUSBClose() and then try to reopen with ThermoUSB-
Open().

Definition at line 47 of file ThermoUSB.h.

4.4.2.2 tdefine THERMOUSB_RECEIVE 1

Definition at line 18 of file ThermoUSB.h.

4.4.2.3 #define THERMOUSB_TRANSMIT 2

Definition at line 19 of file ThermoUSB.h.

Thermo Fisher Scientific SPA Ratastie 2 FIN-01621 Vantaa, Finland www.thermo.com

4.4 ThermoUSB.h File Reference 25

4.4.3 Function Documentation

4.4.3.1 DIIExport void WINAPI ThermoUSBAbort (HANDLE hConn)

Parameters

\ hConn \ Handle of the USB connection. This must be a handle returned from ThermoUSBOpen().

Definition at line 2241 of file ThermoUSB.c.

4.4.3.2 DIIExport BOOL WINAPI ThermoUSBAttachEvent (HANDLE hConn, UINT evCode, HANDLE object)

Parameters

hConn | Connection handle returned form a call to ThermoUSBOpen() (pointer to a USB_CONNECTION structure).

evCode | Event(s) to signal.

object | Handle of an event object.

Parameter 'evCode’ may be any combination of THERMOUSB_RECEIVE, THERMOUSB_TRANSMIT and THERMOUS-
B_ERROR. The event object is set to signaled state whenever any of the selected event(s) occurs.

Parameter ‘object’ is a handle of a Windows event object. If NULL, the selected events will not be signaled.
This function may be called repeatedly to set up a different event object for each event.

The THERMOUSB_RECEIVE event is signaled whenever something is written to the receive buffer. There is no quarantee
that a whole response line is received or that only one response line is received. therefore upon receiving this event the
application should call ThermoUSBRead() or ThermoUSBReadBinary as long as they return data.

The THERMOUSB_TRANSMIT event is signaled when the last data from the transmit buffer is sent. It can be used as
flow control: If new data is not sent untii THERMOUSB_TRANSMIT event is received, functions ThermoUSBWrite() and
ThermoUSBWriteBinary() will never fail.

Definition at line 1853 of file ThermoUSB.c.

4.4.3.3 DIIExport BOOL WINAPI ThermoUSBAttachMsg (HANDLE hConn, HANDLE hWnd, UINT msg, UINT evCode)

Parameters

hConn | Connection handle returned form a call to ThermoUSBOpen() (pointer to a USB_CONNECTION structure).

hWnd | Handle of the window to receive the message.

msg | Message id of the message to send.

event | Event(s) for which a message is sent.

A message with message id ‘'msg’ is sent to window 'hWnd’ whenever any of the event(s) selected with parameter ’ev-
Code’ occurs. Parameter ’evCode’ may be any combination of THERMOUSB_RECEIVE, THERMOUSB_TRANSMIT and
THERMOUSB_ERROR. The event code is passed in the wParam member of the sent Windows message.

The THERMOUSB_RECEIVE event is sent whenever something is written to the receive buffer. There is no quarantee
that a whole response line is received or that only one response line is received. Therefore upon receiving this event the
application should call ThermoUSBRead() or ThermoUSBReadBinary as long as they return data.

The THERMOUSB_TRANSMIT event is sent when the last data from the transmit buffer is sent. It can be used as
flow control: If new data is not sent untii THERMOUSB_TRANSMIT event is received, functions ThermoUSBWrite() and
ThermoUSBWriteBinary() will never fail.

Definition at line 1908 of file ThermoUSB.c.

Thermo Fisher Scientific SPA Ratastie 2 FIN-01621 Vantaa, Finland www.thermo.com

26 File Documentation

4.4.3.4 DIIExport void WINAPI ThermoUSBClose (HANDLE hConn)

Parameters

\ hConn \ Connection handle returned form a call to ThermoUSBOpen()

Closes the communication channel to the instrument. This function should be called when the application has finished
communicating with the instrument. It is not possible to open a communication channel to the instrument while the previous
channel is still open. When the dll is unloaded from the memory, all channels still open are automatically closed.

Definition at line 1767 of file ThermoUSB.c.

4.4.3.5 DIIExport DWORD WINAPI ThermoUSBGetError (HANDLE hConn)

Parameters

hConn \ Handle of the USB connection. This must be a handle returned from ThermoUSBOpen().

Returns

The current Windows error code stored for the connection.

Error conditions may be encountered asynchronously and not just as a direct result of a function call to the dll. Therefore
the application should enable error reporting with ThermoUSBAttachEvent() or ThermoUSBAttachMsg(). When an error
is reported to the application, it may call this function to get the Windows error code, which may or may not be helpful in
resolving the problem. In general, if an error is reported then some receive or transmit data is lost, and the best way of
action is to close the port and then retry opening it again.

A call to ThermoUSBGetError() resets the stored error code to ERROR_SUCCESS.
Definition at line 2308 of file ThermoUSB.c.

4.4.3.6 DIIExport WORD WINAPI ThermoUSBGetThermoVendorld (void)

Returns

Thermo Fisher Scientific Oy USB vendor id, 0X0OAB6.

Definition at line 2332 of file ThermoUSB.c.

4.4.3.7 DIIExport HANDLE WINAPI ThermoUSBOpen (WORD VendorID, WORD ProductiD, LPCSTR SerialNumber)

Parameters

VendorID | The USB vendor id of the device manufacturer, 0XOAB6 for Thermo Fisher Scientific Oy.

Product/D | Product id number of the device.

SerialNumber | Pointer to the serial number string of the device. The device must report an identical serial number for the
connection to succeed. This parameter may be NULL, in which case the connection is made to the first
device with matching VendorID and ProductID.

Returns

A handle to the opened communication channel. This handle must be passed to subsequent calls to the other functions
in this library. If the channel could not be opened, NULL is returned.

This function (or ThermoUSBOpenSimulator) must be called first before using any other functions in the library. Only one
connection per device is allowed.

Definition at line 1738 of file ThermoUSB.c.

Thermo Fisher Scientific SPA Ratastie 2 FIN-01621 Vantaa, Finland www.thermo.com

4.4 ThermoUSB.h File Reference 27

4.4.3.8 DIIExport BOOL WINAPI ThermoUSBRead (HANDLE hConn, LPSTR buf, DWORD bufsize)

Parameters
hConn | Handle of the USB connection. This must be a handle returned from ThermoUSBOpen().
buf | Pointer to a buffer to receive the response.
bufsize | Size of the buffer in bytes.
Returns

TRUE if a response line was retrieved, else FALSE.

Use this function to read full response lines returned from the instrument. The response line is returned without the
terminating CRLF. Therefore TRUE may be returned even if the resulting line is empty. The returned line always ends to
the NUL character even if FALSE is returned.

If the caller’s buffer is too small to hold the whole response line, as much as fits to the buffer is returned and the rest is
returned on subsequent call(s).

Definition at line 1948 of file ThermoUSB.c.

4.4.3.9 DIIExport DWORD WINAPI ThermoUSBReadBinary (HANDLE hConn, LPSTR buf, DWORD bufsize)

Parameters
hConn | Handle of the USB connection. This must be a handle returned from ThermoUSBOpen().
buf | Pointer to buffer receiving the data.
bufsize | Size of the buffer in bytes.
Returns

Number of bytes copied to the user buffer.

Unlike function ThermoUSBRead(), this function returns all data received from the instrument without doing any interpre-
tation on it. You can control the number of bytes returned with the bufsize parameter.

If the return value is less than the given bufsize parameter, there is no more data.

Definition at line 2123 of file ThermoUSB.c.

4.4.3.10 DIIExport BOOL WINAPI ThermoUSBWrite (HANDLE hConn, LPCSTR buf)

Parameters

hConn | Handle of the USB connection. This must be a handle returned from ThermoUSBOpen().

buf | Buffer containing the ASCIIZ string to send.

Returns

TRUE if the string was written to the transmit buffer, else FALSE.

If the whole string does not fit in the transmit buffer, writes nothing and returns FALSE. The application may retry at a later
time.

Definition at line 2169 of file ThermoUSB.c.

4.4.3.11 DIIExport BOOL WINAPI ThermoUSBWriteBinary (HANDLE hConn, LPCSTR buf, DWORD count)

Parameters

hConn \ Handle of the USB connection. This must be a handle returned from ThermoUSBOpen().

Thermo Fisher Scientific SPA Ratastie 2 FIN-01621 Vantaa, Finland www.thermo.com

28 File Documentation

buf | Buffer containing the data to send.

count | Number of bytes to send.

Returns

TRUE if the data was written to the transmit buffer, else FALSE.

If all data does not fit in the transmit buffer, writes nothing and returns FALSE. The application may retry at a later time.

Definition at line 2190 of file ThermoUSB.c.

Thermo Fisher Scientific SPA Ratastie 2 FIN-01621 Vantaa, Finland www.thermo.com

Index

api.h, 19
mainpage.h, 19

THERMOUSB_ERROR
ThermoUSB.h, 24
THERMOUSB_RECEIVE
ThermoUSB.h, 24
THERMOUSB_TRANSMIT
ThermoUSB.h, 24
ThermoUSB.c, 19
ThermoUSBAbort, 20
ThermoUSBAttachEvent, 20
ThermoUSBAttachMsg, 20
ThermoUSBClose, 21
ThermoUSBGetError, 21
ThermoUSBGetThermoVendorld, 21
ThermoUSBOpen, 21
ThermoUSBRead, 22
ThermoUSBReadBinary, 22
ThermoUSBWrite, 22
ThermoUSBWriteBinary, 23
ThermoUSB.h, 23
THERMOUSB_ERROR, 24
THERMOUSB_RECEIVE, 24
ThermoUSBADbort, 25
ThermoUSBAttachEvent, 25
ThermoUSBAttachMsg, 25
ThermoUSBClose, 25
ThermoUSBGetError, 26
ThermoUSBGetThermoVendorld, 26
ThermoUSBOpen, 26
ThermoUSBRead, 26
ThermoUSBReadBinary, 27
ThermoUSBWrite, 27
ThermoUSBWriteBinary, 27
ThermoUSBAbort
ThermoUSB.c, 20
ThermoUSB.h, 25
ThermoUSBAttachEvent
ThermoUSB.c, 20
ThermoUSB.h, 25
ThermoUSBAttachMsg
ThermoUSB.c, 20
ThermoUSB.h, 25
ThermoUSBClose
ThermoUSB.c, 21
ThermoUSB.h, 25

ThermoUSBGetError
ThermoUSB.c, 21
ThermoUSB.h, 26

ThermoUSBGetThermoVendorld
ThermoUSB.c, 21
ThermoUSB.h, 26

ThermoUSBOpen
ThermoUSB.c, 21
ThermoUSB.h, 26

ThermoUSBRead
ThermoUSB.c, 22
ThermoUSB.h, 26

ThermoUSBReadBinary
ThermoUSB.c, 22
ThermoUSB.h, 27

ThermoUSBWrite
ThermoUSB.c, 22
ThermoUSB.h, 27

ThermoUSBWriteBinary
ThermoUSB.c, 23
ThermoUSB.h, 27

ThermoLAN.dII

Interface Specification

Contents

1 ThermoLAN dlil Interface Specification

3 File Index
3.1 File List

2 Using ThermoLAN
2.1 AbOUt . . . e
2.2 Exportedfunctions
2.2.1 ThermoLANListDevices e e
222 ThermoLANOPEN o e e
223 ThermoLANCIose e e
2.24 ThermoLANWrite e
2.25 ThermoLANRead e e
2.2.6 ThermoLANAttachEvent e
2.2.7 ThermoLANAbOrt e e
2.2.8 ThermoLANGetError e

4 File Documentation

4.1 api.hFile Reference L e
4.2 mainpage.h File Reference
4.3 ThermoLANWrapper.cpp File Reference
4.3.1 Detailed Description
4.3.2 Function Documentation e e e
4.3.21 ThermoLANAbort e e e e e e e e

43.22 ThermoLANAttachEvent o e

4.3.2.3 ThermoLANCIOSe o e e e e e e e e

4.3.2.4 ThermoLANGetError o e e e e e e e

4325 ThermoLANListDevices L e e e e e e e

4.3.2.6 ThermoLANOpen o e e e e e e

4.3.2.7 ThermoLANRead L e e e e e

4.3.2.8 ThermoLANWrite L . o e e e e e e e e e e e

4.4 ThermoLANWrapper.h File Reference
441 Detailed Description e e e
4.42 Function Documentation e e
4421 ThermoLANAbort e e e e e e e e e

4422 ThermoLANAttachEvent e

4423 ThermoLANCIOSE o e e e e e e e e

4424 ThermoLANGetError o e e e e e

4425 ThermoLANListDevices e e e e e e e

4426 ThermoLANOpen o e e e e e

4427 ThermoLANRead e e e e

4428 ThermoLANWTrite o e e e e e e e e e e e e e

0N O WW -t

©

11
12

13
13

Chapter 1

ThermoLAN dil Interface Specification

About

The purpose of the ThermoLAN.dIl dynamic link library is to make interface to the Thermo microplate instruments easy and
to offer a similar interface to the instrument as the ThermoUSB.dIl library offers. The user of the ThermoLAN.dIl does not
have to know the details of serial port communication.

Confidential

This document has been prepared by Thermo Fisher Scientific Oy to be used solely for the purposes defined by Thermo
Fisher Scientific Oy. Use for other purposes is not authorized.

Please note that any and all information contained in this document is the property of Thermo Fisher Scientific Oy. This
confidential information ("Confidential Information") shall not be reproduced in whole part or disclosed to any third party
without the prior written approval of Thermo Fisher Scientific Oy. The receiving party shall ensure that it's employees,
officers, representatives and agents shall not disclose to third parties any Confidential Information.

Upon written request from Thermo Fisher Scientific Oy, the receiving party shall promptly return all Confidential Information
or destroy all Confidential Information.

ThermoLAN dil Interface Specification

Thermo Fisher Scientific SPA Ratastie 2 FIN-01621 Vantaa, Finland www.thermo.com

Chapter 2

Using ThermoLAN

2.1 About

ThermoLAN.dIl is a generic library for communicating with several different Thermo Scientific microplate instruments via a
Ethernet port. To communicate with an instrument you use the exported functions of ThermoLAN.dII.

Depending on your project setup, you may find useful a couple of other files which are also provided. The header file
ThermoLAN.h contains the prototypes of the exported functions and definitions of constant values used by the dll. File
ThermoLANL.lib contains information about the dll the linker uses to add references to the library in the executable. This
way the dll is automatically loaded and the exported functions of the library can be called as easy as the functions in the
code using the dll.

4 Using ThermoLAN

2.2 Exported functions

» ThermoLANListDevices
* ThermoLANOpen

* ThermoLANClose

* ThermoLANWrite

* ThermoLANRead

» ThermoLANAttachEvent
» ThermoLANAbort

* ThermoLANGetError

Thermo Fisher Scientific SPA Ratastie 2 FIN-01621 Vantaa, Finland www.thermo.com

2.2 Exported functions 5

2.2.1 ThermoLANListDevices

Search for existing instruments. Full declaration: ThermoLANListDevices().

Parameters

which matches all instruments.

instrumentName | Name of the instrument. Only instruments with a matching name are returned in the list. May be NULL,

returned. May be NULL, which matches any serial number.

serialNumber | Pointer to the serial number string of the instrument. Only instruments with a matching serial number are

buf | Buffer to list found instruments to.

bufSize | Size of the buffer.

Returns

The size in bytes of the complete list of found devices. If the returned value is equal or smaller than the given buffer
size, the buffer contains the complete list of devices found on the LAN. If the returned value is higher than the given
buffer size, no data is returned and the caller must call the function again with big enough buffer. Return value 0 means
that no instruments were found.

On success, the caller’s buffer contains zero terminated strings with a combined length of the return value. The string
terminating zeros are included in the length.

For each found instrument, the first string is the instrument IPv4 address and the TCP port number it is listening, enclosed
in square brackets, e.g. [10.32.196.210:49536].

The IP address string is followed by the WS-Discovery match strings, usually 3 of them. The first one is always 'Thermo-
Device’, the second one is the instrument name and the third one the instrument serial number string.

If the match strings are followed by a string in angle brackets, e.g. <10.32.196.154:57403>, it means that the instrument is
currently connected that IP address and TCP port, and trying to connect to that instrument with function ThermoLANOpen()
will fail. If there is no string in square brackets, the instrument will accept a connection.

Thermo Fisher Scientific SPA Ratastie 2 FIN-01621 Vantaa, Finland www.thermo.com

6 Using ThermoLAN

2.2.2 ThermoLANOpen

Search for the requested instrument and open a communication channel to it. Full declaration: ThermoLANOpen().

Parameters

instrumentName | Name of the instrument.

serialNumber | Pointer to the serial number string of the instrument. This must match with the actual serial number of the
instrument for the connection to succeed. This parameter may be NULL, in which case the connection is
made to the first devicee with matching instrument name.

timeout | Timeout which is used to search the instrument. If 0 is given then WS-Discovery will use default 4 sec
timeout.

Returns

A handle to the opened communication channel. This handle must be passed to subsequent calls to the other functions
in this library. If the channel could not be opened, NULL is returned.

This function must be called first before using any other functions in the library. Only one connection per instrument is
allowed.

To find the requested instrument on the LAN, the WS-Discovery protocol is used. The instrument responds with a Probe
Match to a Probe message if all Target Service strings of the <Types> element of the Probe match the Target Service
strings of the instrument. One of the strings, "ThermoDevice", is common to all instruments. Other strings are the instru-
ment name string and the serial number string. Due to Windows limitations, a "SN_" prefix is added to the serial number
string.

The <XAddrs> element of the Probe Match response contains the IP address of the instrument and the TCP port number
it is listening to.

Thermo Fisher Scientific SPA Ratastie 2 FIN-01621 Vantaa, Finland www.thermo.com

2.2 Exported functions 7

2.2.3 ThermoLANClose

Close an LAN connection. Full declaration: ThermoLANCIlose().

Parameters

\ hConn | Connection handle returned form a call to ThermoLANOpen()

Closes the communication channel to the instrument. This function should be called when the application has finished
communicating with the instrument. It is not possible to open a communication channel to the instrument while the previous
channel is still open. When the dll is unloaded from the memory, all channels still open are automatically closed.

Thermo Fisher Scientific SPA Ratastie 2 FIN-01621 Vantaa, Finland www.thermo.com

8 Using ThermoLAN

2.2.4 ThermoLANWrite

Write a string to the transmit buffer. Full declaration: ThermoLANWFrite().

Parameters

hConn | Handle of the LAN connection. This must be a handle returned from ThermoLANOpen().

buf | Buffer containing the ASCIIZ string to send.

Returns

TRUE if the string was written to the transmit buffer, else FALSE.

If the whole string does not fit in the transmit buffer, writes nothing and returns FALSE. If FALSE is returned, the application
can call function ThermoLANGetError() to determine if the transmit buffer was full or is some other error occurred. In case
of transmit buffer full, ThermoLANGetError() returns ERROR_SUCCESS and the application may retry sending at a later
time.

Thermo Fisher Scientific SPA Ratastie 2 FIN-01621 Vantaa, Finland www.thermo.com

2.2 Exported functions 9

2.25 ThermoLANRead

Read a received response line. Full declaration: ThermoLANRead().

Parameters
hConn | Handle of the LAN connection. This must be a handle returned from ThermoLANOpen().
buf | Pointer to a buffer to receive the response.
bufsize | Size of the buffer in bytes.
Returns

TRUE if a response line was retrieved, else FALSE.

Use this function to read full response lines returned from the instrument. The response line is returned without the
terminating CRLF. Therefore TRUE may be returned even if the resulting line is empty. The returned line always ends to
the NUL character even if FALSE is returned.

If the caller’s buffer is too small to hold the whole response line, as much as fits to the buffer is returned and the rest is
returned on subsequent call(s).

Thermo Fisher Scientific SPA Ratastie 2 FIN-01621 Vantaa, Finland www.thermo.com

10 Using ThermoLAN

2.2.6 ThermoLANAttachEvent

Attach an event object to a LAN connection. Full declaration: ThermoLANAttachEvent().

Parameters
hConn | Connection handle returned form a call to ThermoLANOpen().
evCode | Event(s) to signal.
object | Handle of an event object.
Returns

TRUE on success, else FALSE.

Parameter ’evCode’ may be any combination of THERMOLAN_RECEIVE, THERMOLAN_TRANSMIT and THERMOLAN-
_ERROR. The event object is set to signaled state whenever any of the selected event(s) occurs.

Parameter ’object’ is a handle of a Windows event object. If NULL, the selected events will not be signaled.
This function may be called repeatedly to set up a different event object for each event.

The THERMOLAN_RECEIVE event is signaled whenever something is written to the receive buffer. There is no quarantee
that a whole response line is received or that only one response line is received. Therefore upon receiving this event the
application should repeatedly call ThermoLANRead() as long it returns TRUE.

The THERMOLAN_TRANSMIT event is signaled when the last data from the transmit buffer is sent. It can be used as flow
control: If new data is not sent untii THERMOLAN_TRANSMIT event is received, function ThermoLANW ite() will never
fail.

The THERMOLAN_ERROR event is signaled when the dll detects an error, for example trying to send data when the TCP
connection has been closed by the instrument side. If the application wants to continue communication with the instrument
after an error, it should close and reopen the connection.

Thermo Fisher Scientific SPA Ratastie 2 FIN-01621 Vantaa, Finland www.thermo.com

2.2 Exported functions 11

2.2.7 ThermoLANAbort

Send Abort command to the instrument. Full declaration: ThermoLANAbort().

Parameters

\ hConn \ Handle of the LAN connection. This must be a handle returned from ThermoLANOpen().

The LAN Abort sequence is this:

» Send an UDP message containing text "Abort" (without quotes or newline) to the same UDP port number as is used
for the TCP and wait a moment for an identical response from the instrument. The response is sent over the same
UDP port.

+ Retry two times more at half second interval if no response.

+ If a response received or no response after retries, send Abort character (0x1B) to the TCP port.

Thermo Fisher Scientific SPA Ratastie 2 FIN-01621 Vantaa, Finland www.thermo.com

12 Using ThermoLAN

2.2.8 ThermoLANGetError
Get the last error code recorded for the communication channel. Full declaration: ThermoLANGetError().

Parameters

\ hConn \ Handle of the LAN connection. This must be a handle returned from ThermoLANOpen().

Returns

One of the Windows system error codes, ERROR_SUCCESS if no error has occurred.

The recorded error code is automatically cleared when this function is called. ERROR_INVALID_HANDLE is returned if
the connection handle is invalid.

Thermo Fisher Scientific SPA Ratastie 2 FIN-01621 Vantaa, Finland www.thermo.com

Chapter 3

File Index

3.1

File List

Here is a list of all files with brief descriptions:

api.h

Part of ThermoLAN dll documentation 15
mainpage.h

Start page of ThermoLAN.dIl Design Description 15
ThermoLANWTrapper.cpp

Implements ethernet interface to Thermo microplate instruments 15
ThermoLANWrapper.h

Functions exported from ThermoLAN.dIl o 19

14

File Index

Thermo Fisher Scientific SPA Ratastie 2 FIN-01621 Vantaa, Finland www.thermo.com

Chapter 4

File Documentation

4.1 api.h File Reference

Part of ThermoLAN dll documentation.

4.2 mainpage.h File Reference

Start page of ThermoLAN.dIl Design Description.

4.3 ThermoLANWrapper.cpp File Reference

Implements ethernet interface to Thermo microplate instruments.

Functions

+ void * ThermoLANOpen (char xinstrumentName, char sserialNumber, int timeout)

Search for the requested instrument and open a communication channel to it.
+ DWORD ThermoLANListDevices (char xinstrumentName, char xserialNumber, char xbuf, unsigned long bufSize)

Search for existing instruments.
+ void ThermoLANCIose (void xhConn)

Close an LAN connection.
» BOOL __stdcall ThermoLANWFrite (void xhConn, const char xstr)

Write a string to the transmit buffer.
* BOOL __stdcall ThermoLANRead (void xhConn, char *str, unsigned long bufSize)

Read a received response line.
« BOOL __stdcall ThermoLANAttachEvent (void *hConn, unsigned int evCode, void *receiver)

Attach an event object to a LAN connection.
+ void ThermoLANAbort (void *hConn)

Send Abort command to the instrument.
+ DWORD ThermoLANGetError (void xhConn)

Get the last error code recorded for the communication channel.

16 File Documentation

4.3.1 Detailed Description
Note

Copyright by Thermo Fisher Scientific Oy 2015

Definition in file ThermoLANWrapper.cpp.

4.3.2 Function Documentation

4.3.2.1 void ThermoLANAbort (void « hConn)

Parameters

hConn \ Handle of the LAN connection. This must be a handle returned from ThermoLANOpen().

The LAN Abort sequence is this:

» Send an UDP message containing text "Abort" (without quotes or newline) to the same UDP port number as is used
for the TCP and wait a moment for an identical response from the instrument. The response is sent over the same
UDP port.

* Retry two times more at half second interval if no response.

« If a response received or no response after retries, send Abort character (0x1B) to the TCP port.

Definition at line 379 of file ThermoLANWTrapper.cpp.

4.3.2.2 BOOL __stdcall ThermoLANAttachEvent (void x hConn, unsigned int evCode, void x receiver)

Parameters
hConn | Connection handle returned form a call to ThermoLANOpen().
evCode | Event(s) to signal.
object | Handle of an event object.
Returns

TRUE on success, else FALSE.

Parameter ’evCode’ may be any combination of THERMOLAN_RECEIVE, THERMOLAN_TRANSMIT and THERMOLAN-
_ERROR. The event object is set to signaled state whenever any of the selected event(s) occurs.

Parameter 'object’ is a handle of a Windows event object. If NULL, the selected events will not be signaled.
This function may be called repeatedly to set up a different event object for each event.

The THERMOLAN_RECEIVE event is signaled whenever something is written to the receive buffer. There is no quarantee
that a whole response line is received or that only one response line is received. Therefore upon receiving this event the
application should repeatedly call ThermoLANRead() as long it returns TRUE.

The THERMOLAN_TRANSMIT event is signaled when the last data from the transmit buffer is sent. It can be used as flow
control: If new data is not sent untii THERMOLAN_TRANSMIT event is received, function ThermoLANWFite() will never
fail.

The THERMOLAN_ERROR event is signaled when the dll detects an error, for example trying to send data when the TCP
connection has been closed by the instrument side. If the application wants to continue communication with the instrument
after an error, it should close and reopen the connection.

Definition at line 354 of file ThermoLANWrapper.cpp.

Thermo Fisher Scientific SPA Ratastie 2 FIN-01621 Vantaa, Finland www.thermo.com

4.3 ThermoLANWrapper.cpp File Reference 17

4.3.2.3 void ThermoLANClose (void « hConn)

Parameters

\ hConn | Connection handle returned form a call to ThermoLANOpen()

Closes the communication channel to the instrument. This function should be called when the application has finished
communicating with the instrument. It is not possible to open a communication channel to the instrument while the previous
channel is still open. When the dll is unloaded from the memory, all channels still open are automatically closed.

Definition at line 234 of file ThermoLANWrapper.cpp.

4.3.2.4 DWORD ThermoLANGetError (void x hConn)

Parameters

hConn \ Handle of the LAN connection. This must be a handle returned from ThermoLANOpen().

Returns

One of the Windows system error codes, ERROR_SUCCESS if no error has occurred.

The recorded error code is automatically cleared when this function is called. ERROR_INVALID_HANDLE is returned if
the connection handle is invalid.

Definition at line 400 of file ThermoLANWTrapper.cpp.

4.3.2.5 DWORD ThermoLANListDevices (char x instrumentName, char x serialNumber, char * buf, unsigned long bufSize)

Parameters

which matches all instruments.

instrumentName | Name of the instrument. Only instruments with a matching name are returned in the list. May be NULL,

returned. May be NULL, which matches any serial number.

serialNumber | Pointer to the serial number string of the instrument. Only instruments with a matching serial number are

buf | Buffer to list found instruments to.

bufSize | Size of the buffer.

Returns

The size in bytes of the complete list of found devices. If the returned value is equal or smaller than the given buffer
size, the buffer contains the complete list of devices found on the LAN. If the returned value is higher than the given
buffer size, no data is returned and the caller must call the function again with big enough buffer. Return value 0 means
that no instruments were found.

On success, the caller’s buffer contains zero terminated strings with a combined length of the return value. The string
terminating zeros are included in the length.

For each found instrument, the first string is the instrument IPv4 address and the TCP port number it is listening, enclosed
in square brackets, e.g. [10.32.196.210:49536].

The IP address string is followed by the WS-Discovery match strings, usually 3 of them. The first one is always 'Thermo-
Device’, the second one is the instrument name and the third one the instrument serial number string.

If the match strings are followed by a string in angle brackets, e.g. <10.32.196.154:57403>, it means that the instrument is
currently connected that IP address and TCP port, and trying to connect to that instrument with function ThermoLANOpen()
will fail. If there is no string in square brackets, the instrument will accept a connection.

Definition at line 213 of file ThermoLANWrapper.cpp.

Thermo Fisher Scientific SPA Ratastie 2 FIN-01621 Vantaa, Finland www.thermo.com

18

File Documentation

4.3.2.6 void+ ThermoLANOpen (char x instrumentName, char x serialNumber, int timeout)

Parameters
instrumentName | Name of the instrument.
serialNumber | Pointer to the serial number string of the instrument. This must match with the actual serial number of the
instrument for the connection to succeed. This parameter may be NULL, in which case the connection is
made to the first devicee with matching instrument name.
timeout | Timeout which is used to search the instrument. If 0 is given then WS-Discovery will use default 4 sec
timeout.
Returns

A handle to the opened communication channel. This handle must be passed to subsequent calls to the other functions
in this library. If the channel could not be opened, NULL is returned.

This function must be called first before using any other functions in the library. Only one connection per instrument is

allowed.

To find the requested instrument on the LAN, the WS-Discovery protocol is used. The instrument responds with a Probe
Match to a Probe message if all Target Service strings of the <Types> element of the Probe match the Target Service
strings of the instrument. One of the strings, "ThermoDevice", is common to all instruments. Other strings are the instru-
ment name string and the serial number string. Due to Windows limitations, a "SN_" prefix is added to the serial number

string.

The <XAddrs> element of the Probe Match response contains the IP address of the instrument and the TCP port number

it is listening to.

Definition at line 161 of file ThermoLANWTrapper.cpp.

4.3.2.7 BOOL __stdcall ThermoLANRead (void * hConn, char x str, unsigned long bufSize)

Parameters
hConn | Handle of the LAN connection. This must be a handle returned from ThermoLANOpen().
buf | Pointer to a buffer to receive the response.
bufsize | Size of the buffer in bytes.
Returns

TRUE if a response line was retrieved, else FALSE.

Use this function to read full response lines returned from the instrument. The response line is returned without the
terminating CRLF. Therefore TRUE may be returned even if the resulting line is empty. The returned line always ends to
the NUL character even if FALSE is returned.

If the caller’s buffer is too small to hold the whole response line, as much as fits to the buffer is returned and the rest is
returned on subsequent call(s).

Definition at line 299 of file ThermoLANWTrapper.cpp.

4.3.2.8 BOOL __stdcall ThermoLANWrite (void « hConn, const char x str)

Parameters

hConn

Handle of the LAN connection. This must be a handle returned from ThermoLANOpen().

buf

Buffer containing the ASCIIZ string to send.

Returns

TRUE if the string was written to the transmit buffer, else FALSE.

Thermo Fisher Scientific SPA Ratastie 2 FIN-01621 Vantaa, Finland www.thermo.com

4.4 ThermoLANWrapper.h File Reference 19

If the whole string does not fit in the transmit buffer, writes nothing and returns FALSE. If FALSE is returned, the application
can call function ThermoLANGetError() to determine if the transmit buffer was full or is some other error occurred. In case
of transmit buffer full, ThermoLANGetError() returns ERROR_SUCCESS and the application may retry sending at a later
time.

Definition at line 260 of file ThermoLANWTrapper.cpp.

4.4 ThermoLANWrapper.h File Reference

Functions exported from ThermoLAN.dII.

Functions

+ void * ThermoLANOpen (char xinstrumentName, char sserialNumber, int timeout)

Search for the requested instrument and open a communication channel to it.
+ DWORD ThermoLANListDevices (char xinstrumentName, char xserialNumber, char xbuf, unsigned long bufSize)

Search for existing instruments.
+ void ThermoLANCIose (void xhConn)

Close an LAN connection.
« BOOL __stdcall ThermoLANWFite (void xhConn, const char xstr)

Write a string to the transmit buffer.
+ BOOL __stdcall ThermoLANRead (void xhConn, char xstr, unsigned long bufSize)

Read a received response line.
+ BOOL __stdcall ThermoLANAttachEvent (void xhConn, unsigned int evCode, void xreceiver)

Attach an event object to a LAN connection.
+ void ThermoLANADbort (void xhConn)

Send Abort command to the instrument.
+ DWORD ThermoLANGetError (void xhConn)

Get the last error code recorded for the communication channel.

4.4.1 Detailed Description
Note

Copyright by Thermo Fisher Scientific Oy 2015
Ethernet interface to Thermo microplate instruments.

Definition in file ThermoLANWrapper.h.

4.4.2 Function Documentation

4.4.2.1 void ThermoLANAbort (void = hConn)

Parameters

hConn \ Handle of the LAN connection. This must be a handle returned from ThermoLANOpen().

The LAN Abort sequence is this:

» Send an UDP message containing text "Abort" (without quotes or newline) to the same UDP port number as is used
for the TCP and wait a moment for an identical response from the instrument. The response is sent over the same

Thermo Fisher Scientific SPA Ratastie 2 FIN-01621 Vantaa, Finland www.thermo.com

20 File Documentation

UDP port.
* Retry two times more at half second interval if no response.

« If a response received or no response after retries, send Abort character (0x1B) to the TCP port.

Definition at line 379 of file ThermoLANWrapper.cpp.

4.4.2.2 BOOL __stdcall ThermoLANAttachEvent (void « hConn, unsigned int evCode, void « receiver)

Parameters
hConn | Connection handle returned form a call to ThermoLANOpen().
evCode | Event(s) to signal.
object | Handle of an event object.
Returns

TRUE on success, else FALSE.

Parameter ’evCode’ may be any combination of THERMOLAN_RECEIVE, THERMOLAN_TRANSMIT and THERMOLAN-
_ERROR. The event object is set to signaled state whenever any of the selected event(s) occurs.

Parameter 'object’ is a handle of a Windows event object. If NULL, the selected events will not be signaled.
This function may be called repeatedly to set up a different event object for each event.

The THERMOLAN_RECEIVE event is signaled whenever something is written to the receive buffer. There is no quarantee
that a whole response line is received or that only one response line is received. Therefore upon receiving this event the
application should repeatedly call ThermoLANRead() as long it returns TRUE.

The THERMOLAN_TRANSMIT event is signaled when the last data from the transmit buffer is sent. It can be used as flow
control: If new data is not sent untii THERMOLAN_TRANSMIT event is received, function ThermoLANWrite() will never
fail.

The THERMOLAN_ERROR event is signaled when the dll detects an error, for example trying to send data when the TCP
connection has been closed by the instrument side. If the application wants to continue communication with the instrument
after an error, it should close and reopen the connection.

Definition at line 354 of file ThermoLANWrapper.cpp.

4.42.3 void ThermoLANClose (void x hConn)

Parameters

\ hConn | Connection handle returned form a call to ThermoLANOpen()

Closes the communication channel to the instrument. This function should be called when the application has finished
communicating with the instrument. It is not possible to open a communication channel to the instrument while the previous
channel is still open. When the dll is unloaded from the memory, all channels still open are automatically closed.

Definition at line 234 of file ThermoLANWTrapper.cpp.

4.42.4 DWORD ThermoLANGetError (void x hConn)

Parameters

hConn \ Handle of the LAN connection. This must be a handle returned from ThermoLANOpen().

Thermo Fisher Scientific SPA Ratastie 2 FIN-01621 Vantaa, Finland www.thermo.com

4.4 ThermoLANWrapper.h File Reference 21

Returns

One of the Windows system error codes, ERROR_SUCCESS if no error has occurred.

The recorded error code is automatically cleared when this function is called. ERROR_INVALID_HANDLE is returned if
the connection handle is invalid.

Definition at line 400 of file ThermoLANWrapper.cpp.

4.42.5 DWORD ThermoLANListDevices (char x instrumentName, char x serialNumber, char x buf, unsigned long bufSize)

Parameters

which matches all instruments.

instrumentName | Name of the instrument. Only instruments with a matching name are returned in the list. May be NULL,

returned. May be NULL, which matches any serial number.

serialNumber | Pointer to the serial number string of the instrument. Only instruments with a matching serial number are

buf | Buffer to list found instruments to.

bufSize | Size of the buffer.

Returns

The size in bytes of the complete list of found devices. If the returned value is equal or smaller than the given buffer
size, the buffer contains the complete list of devices found on the LAN. If the returned value is higher than the given
buffer size, no data is returned and the caller must call the function again with big enough buffer. Return value 0 means
that no instruments were found.

On success, the caller’s buffer contains zero terminated strings with a combined length of the return value. The string
terminating zeros are included in the length.

For each found instrument, the first string is the instrument IPv4 address and the TCP port number it is listening, enclosed
in square brackets, e.g. [10.32.196.210:49536].

The IP address string is followed by the WS-Discovery match strings, usually 3 of them. The first one is always 'Thermo-
Device’, the second one is the instrument name and the third one the instrument serial number string.

If the match strings are followed by a string in angle brackets, e.g. <10.32.196.154:57403>, it means that the instrument is
currently connected that IP address and TCP port, and trying to connect to that instrument with function ThermoLANOpen()
will fail. If there is no string in square brackets, the instrument will accept a connection.

Definition at line 213 of file ThermoLANWTrapper.cpp.

4.4.2.6 voidx ThermoLANOpen (char x instrumentName, char x serialNumber, int timeout)

Parameters
instrumentName | Name of the instrument.
serialNumber | Pointer to the serial number string of the instrument. This must match with the actual serial number of the
instrument for the connection to succeed. This parameter may be NULL, in which case the connection is
made to the first devicee with matching instrument name.
timeout | Timeout which is used to search the instrument. If 0 is given then WS-Discovery will use default 4 sec
timeout.
Returns

A handle to the opened communication channel. This handle must be passed to subsequent calls to the other functions
in this library. If the channel could not be opened, NULL is returned.

This function must be called first before using any other functions in the library. Only one connection per instrument is

allowed.

Thermo Fisher Scientific SPA Ratastie 2 FIN-01621 Vantaa, Finland www.thermo.com

22 File Documentation

To find the requested instrument on the LAN, the WS-Discovery protocol is used. The instrument responds with a Probe
Match to a Probe message if all Target Service strings of the <Types> element of the Probe match the Target Service
strings of the instrument. One of the strings, "ThermoDevice", is common to all instruments. Other strings are the instru-
ment name string and the serial number string. Due to Windows limitations, a "SN_" prefix is added to the serial number
string.

The <XAddrs> element of the Probe Match response contains the IP address of the instrument and the TCP port number
it is listening to.

Definition at line 161 of file ThermoLANWTrapper.cpp.

4.4.2.7 BOOL __stdcall ThermoLANRead (void * hConn, char x str, unsigned long bufSize)

Parameters
hConn | Handle of the LAN connection. This must be a handle returned from ThermoLANOpen().
buf | Pointer to a buffer to receive the response.
bufsize | Size of the buffer in bytes.
Returns

TRUE if a response line was retrieved, else FALSE.

Use this function to read full response lines returned from the instrument. The response line is returned without the
terminating CRLF. Therefore TRUE may be returned even if the resulting line is empty. The returned line always ends to
the NUL character even if FALSE is returned.

If the caller’s buffer is too small to hold the whole response line, as much as fits to the buffer is returned and the rest is
returned on subsequent call(s).

Definition at line 299 of file ThermoLANWTrapper.cpp.

4.4.2.8 BOOL __stdcall ThermoLANWrite (void hConn, const char x str)

Parameters

hConn | Handle of the LAN connection. This must be a handle returned from ThermoLANOpen().

buf | Buffer containing the ASCIIZ string to send.

Returns

TRUE if the string was written to the transmit buffer, else FALSE.

If the whole string does not fit in the transmit buffer, writes nothing and returns FALSE. If FALSE is returned, the application
can call function ThermoLANGetError() to determine if the transmit buffer was full or is some other error occurred. In case
of transmit buffer full, ThermoLANGetError() returns ERROR_SUCCESS and the application may retry sending at a later
time.

Definition at line 260 of file ThermoLANWTrapper.cpp.

Thermo Fisher Scientific SPA Ratastie 2 FIN-01621 Vantaa, Finland www.thermo.com

Index

api.h, 15
mainpage.h, 15

ThermoLANADbort
ThermoLANWrapper.cpp, 16
ThermoLANWrapper.h, 19

ThermoLANAttachEvent
ThermoLANWrapper.cpp, 16
ThermoLANWTrapper.h, 20

ThermoLANClose
ThermoLANWrapper.cpp, 16
ThermoLANWTrapper.h, 20

ThermoLANGetError
ThermoLANWrapper.cpp, 17
ThermoLANWrapper.h, 20

ThermoLANListDevices
ThermoLANWrapper.cpp, 17
ThermoLANWTrapper.h, 21

ThermoLANOpen
ThermoLANWrapper.cpp, 17
ThermoLANWTrapper.h, 21

ThermoLANRead
ThermoLANWrapper.cpp, 18
ThermoLANWTrapper.h, 22

ThermoLANWrapper.cpp, 15
ThermoLANAbort, 16
ThermoLANAttachEvent, 16
ThermoLANClose, 16
ThermoLANGetError, 17
ThermoLANListDevices, 17
ThermoLANOpen, 17
ThermoLANRead, 18
ThermoLANWErite, 18

ThermoLANWTrapper.h, 19
ThermoLANAbort, 19
ThermoLANAttachEvent, 20
ThermoLANCIlose, 20
ThermoLANGetError, 20
ThermoLANListDevices, 21
ThermoLANOpen, 21
ThermoLANRead, 22
ThermoLANWrite, 22

ThermoLANWrite
ThermoLANWrapper.cpp, 18
ThermoLANWTrapper.h, 22

ThermoCOM. dII

Interface Specification

Contents

1 ThermoCOM dIl Interface Specification

2 Using ThermoCOM

2.1 About . .. e e e
2.2 Exported functions e e e
221 ThermoCOMOPEN o e e e
2.22 ThermoCOMOpenSimulator e
223 ThermoCOMCIOSE e e e
2.24 ThermoCOMSetParam e
2.25 ThermoCOMAttachEvent e
2.2.6 ThermoCOMAttachMsg e e e e e e
2.27 ThermoCOMRead e e e
2.2.8 ThermoCOMReadBinary e e e
2.29 ThermoCOMWrite e e
2.210 ThermoCOMWriteBinary o e
2.2.11 ThermoCOMGEetEror e e
2.2.12 ThermoCOMAboOrt e e e

3 File Index

3.1 FileList e e e
4 File Documentation

4.1 api.h File Reference e e
4.2 mainpage.h File Reference e
4.3 ThermoCOM.c File Reference e e
4.3.1 Detailed Description e e e e e
4.3.2 Function Documentation L
4321 ThermoCOMADOrt o e e e e e e e e

4.3.2.2 ThermoCOMAttachEvent o e

43.23 ThermoCOMAttachMsg e e e e e e e e e

4.3.24 ThermoCOMCIOSE o o e e e e e e e e e

4.3.25 ThermoCOMGELError e e e e e e e e e e e e e e

4.3.2.6 ThermoCOMOpEN o o e e e e e e e e

4.3.2.7 ThermoCOMOpenSimulator o o e e e e

4.3.2.8 ThermoCOMRead o e e e e e e e e e

4.3.2.9 ThermoCOMReadBinary e e e e e e e e e

43210 ThermoCOMSetParam e e e e e e e

43211 ThermoCOMWEIite o e

4.3.2.12 ThermoCOMWriteBinary o e e e e e

4.4 ThermoCOM.h File Reference e e e e
4.41 Detailed Description e e e
4.42 Macro Definition Documentation L e
4.4.21 HSKINONE o e e e e e e e s e e e e e

4422 HSK.RTSCTS o e e e e e e s e e s e e e e

4423 HSKXONXOFF e e e e e e e e e e e e e e e

4424 THERMOCOM_ERROR e e e e e e e e e e e e e e e e

ii CONTENTS
4425 THERMOCOM_RECEIVE e e e e e e d e e e e e 26

4426 THERMOCOM_TRANSMIT o o e e e e e e e e e e e e e e 26

4.4.3 Function Documentation L e 26
4.4.3.1 ThermoCOMADboOrt o e e e e e 26

4432 ThermoCOMAttachEvent e e e e e e 26

4433 ThermoCOMAttachMsg e e e e e e e 27

4434 ThermoCOMCIOSE o o e e e e e e e e 27

4435 ThermoCOMGEetError o . e e e e e e e e e 27

4436 ThermoCOMOPEN o o e e e e e e e e e e 28

4.43.7 ThermoCOMOpenSimulator o o e e e e 28

4438 ThermoCOMRead e e e e e e e e e e e e e e 28

4.4.3.9 ThermoCOMReadBinary o o o e e e e e e e 29

44310 ThermoCOMSetParam e e e e e e e 29

44311 ThermoCOMWrite o e e e e e e e 29

44312 ThermoCOMWriteBinary o v i i e e e e e e e e e e 30

Thermo Fisher Scientific SPA Ratastie 2 FIN-01621 Vantaa, Finland www.thermo.com

Chapter 1

ThermoCOM dlil Interface Specification

About

The purpose of the ThermoCOM.dIl dynamic link library is to make interface to the Thermo microplate instruments easy
and to offer a similar interface to the instrument as the ThermoUSB.dll library offers. The user of the ThermoCOM.dIl does
not have to know the details of serial port communication.

Confidential

This document has been prepared by Thermo Fisher Scientific Oy to be used solely for the purposes defined by Thermo
Fisher Scientific Oy. Use for other purposes is not authorized.

Please note that any and all information contained in this document is the property of Thermo Fisher Scientific Oy. This
confidential information ("Confidential Information") shall not be reproduced in whole part or disclosed to any third party
without the prior written approval of Thermo Fisher Scientific Oy. The receiving party shall ensure that it's employees,
officers, representatives and agents shall not disclose to third parties any Confidential Information.

Upon written request from Thermo Fisher Scientific Oy, the receiving party shall promptly return all Confidential Information
or destroy all Confidential Information.

ThermoCOM dll Interface Specification

Thermo Fisher Scientific SPA Ratastie 2 FIN-01621 Vantaa, Finland www.thermo.com

Chapter 2

Using ThermoCOM

2.1 About

ThermoCOM.dIl is a generic library for communicating with several different Thermo Scientific microplate instruments via
a PC serial port. To communicate with an instrument you use the exported functions of ThermoCOM.dlII.

Depending on your project setup, you may find useful a couple of other files which are also provided. The header file
ThermoCOM.h contains the prototypes of the exported functions and definitions of constant values used by the dll. File
ThermoCOM.lib contains information about the dll the linker uses to add references to the library in the executable. This
way the dll is automatically loaded and the exported functions of the library can be called as easy as the functions in the
code using the dll.

4 Using ThermoCOM

2.2 Exported functions

* ThermoCOMOpen

* ThermoCOMOpenSimulator
* ThermoCOMClose

* ThermoCOMSetParam

* ThermoCOMAttachEvent
» ThermoCOMAttachMsg
* ThermoCOMRead

* ThermoCOMReadBinary
* ThermoCOMWrite

* ThermoCOMWriteBinary
* ThermoCOMGetError

* ThermoCOMAbort

Thermo Fisher Scientific SPA Ratastie 2 FIN-01621 Vantaa, Finland www.thermo.com

2.2 Exported functions

221 ThermoCOMOpen

Open the requested serial port and check whether an instrument with the requested serial number is connected to the port.
Full declaration: ThermoCOMOpen().

Parameters
PortNumber | The Windows serial port number to open.
baud | The baudrate to use.
InstrumentName | The name of the instrument. If not NULL, the name the instrument returns to a version query must match
this string.
SerialNumber | The serial number of the instrument. If not NULL, the serial number the instrument returns to a version
query must match this string.
Returns

A handle to the opened communication channel. This handle must be passed to subsequent calls to the other functions
in this library. If the channel could not be opened, NULL is returned.

This function (or ThermoCOMOpenSimulator) must be called first before using any other functions in the library. Only one
connection per communication port is allowed.

If either InstrumentName or SerialNumber, or both, are defined, a VER command is sent to the serial port, and these
arguments are checked against the returned response. If there is a mismatch, the port is closed and NULL is returned.

If both InstrumentName and SerialNumber are NULL, the VER command is not sent. This makes it possible to open a
channel to an instrument which does not support the VER command. In this case it is the responsibility of the application
to check what if anything is connected to the serial port.

Thermo Fisher Scientific SPA Ratastie 2 FIN-01621 Vantaa, Finland www.thermo.com

6 Using ThermoCOM

2.2.2 ThermoCOMOpenSimulator

Open a pipe to a communication port of an instrument simulator. Full declaration: ThermoCOMOpenSimulator().

Parameters

pipeName | Name of the named pipe used for simulating the communication port. The pipe must have been created by
the simulated port driver of the instrument simulator.

Returns

Communication handle to the simulator, NULL if the function fails.

This function (or ThermoCOMOpen) must be called first before using any other functions in the library. Only one connection
per device is allowed. Standard names of the pipes used for simulating communication ports are:

« Serial port: \OxXXXXCOM

» Debug port: \OxXXXXDBG

» USB port: \OxXXXXUSB

LAN port: \OXXXXXLAN

The XXXXin all pipe names is the ProductID of the device in hex.

Thermo Fisher Scientific SPA Ratastie 2 FIN-01621 Vantaa, Finland www.thermo.com

2.2 Exported functions 7

2.2.3 ThermoCOMClose

Close a serial port connection. Full declaration: ThermoCOMCIose().

Parameters

\ hComm \ Connection handle returned from a call to ThermoCOMOpen().

Returns

None.

All open connections are automatically closed when the dll is unloaded, but it is good programming practise to close them
explicitly when no longer used.

Thermo Fisher Scientific SPA Ratastie 2 FIN-01621 Vantaa, Finland www.thermo.com

8 Using ThermoCOM

2,24 ThermoCOMSetParam

Set the baud rate of the serial port. Full declaration: ThermoCOMSetParam().

Parameters

hConn | Connection handle returned from a call to ThermoCOMOpen().

baud | The baud rate to set.

handshake | The handshake to set.

Returns

TRUE on success, else FALSE.

It is recommended to use on of the standard baudrates from 110 to 256000. Using a non standard baudrate may lead to
too high bit time error for the communication to work.

The handshake must be one of HSK_NONE, HSK_XONXOFF and HSK_RTSCTS. Thermo microplate instruments use
the HSK_XONXOFF handshake with the exception of some very old models.

Thermo Fisher Scientific SPA Ratastie 2 FIN-01621 Vantaa, Finland www.thermo.com

2.2 Exported functions 9

2.2.5 ThermoCOMAttachEvent

Attach an event object to a serial port connection. Full declaration: ThermoCOMAttachEvent().

Parameters

hComm | Connection handle returned from a call to ThermoCOMOpen().

evCode | Event(s) to signal.

object | Handle of an event object.

Returns

None

Parameter ‘evCode’ may be any combination of THERMOCOM_RECEIVE, THERMOCOM_TRANSMIT and THERMOC-
OM_ERROR. The event object is set to signaled state whenever any of the selected event(s) occurs.

Parameter ’object’ is a handle of a Windows event object. If NULL, the selected events will not be signaled.
This function may be called repeatedly to set up a different event object for each event.

The THERMOCOM_RECEIVE event is signaled whenever something is written to the receive buffer. There is no quarantee
that a whole response line is received or that only one response line is received. therefore upon receiving this event the
application should call ThermoCOMRead() or ThermoCOMReadBinary as long as they return data.

The THERMOCOM_TRANSMIT event is signaled when the last data from the transmit buffer is sent. It can be used as
flow control: If new data is not sent until THERMOCOM_TRANSMIT event is received, functions ThermoCOMWrite() and
ThermoCOMWriteBinary() will never fail.

Thermo Fisher Scientific SPA Ratastie 2 FIN-01621 Vantaa, Finland www.thermo.com

10 Using ThermoCOM

2.2.6 ThermoCOMAttachMsg

Attach an event message to a serial port connection. Full declaration: ThermoCOMAttachMsg().

Parameters

hComm | Connection handle returned from a call to ThermoCOMOpen().

hWhnd | Handle of the window to receive the message.

msg | Message id of the message to send.

evCode | Event(s) for which a message is sent.

Returns

None

A message with message id ‘'msg’ is sent to window "’hWnd’ whenever any of the event(s) selected with parameter ’evCode’
occurs. Parameter 'evCode’ may be any combination of THERMOCOM_RECEIVE, THERMOCOM_TRANSMIT and THE-
RMOCOM_ERROR. The event code is passed to the application in the wParam member of the message structure.

The THERMOCOM_RECEIVE event is sent whenever something is written to the receive buffer. There is no quarantee
that a whole response line is received or that only one response line is received. therefore upon receiving this event the
application should call ThermoCOMRead() or ThermoCOMReadBinary as long as they return data.

The THERMOCOM_TRANSMIT event is sent when the last data from the transmit buffer is sent. It can be used as
flow control: If new data is not sent untii THERMOCOM_TRANSMIT event is received, functions ThermoCOMWrite() and
ThermoCOMWriteBinary() will never fail.

Thermo Fisher Scientific SPA Ratastie 2 FIN-01621 Vantaa, Finland www.thermo.com

2.2 Exported functions 11

2.2.7 ThermoCOMRead

Read a received response line. Full declaration: ThermoCOMRead().

Parameters
hComm | Connection handle returned from a call to ThermoCOMOpen().
buf | Pointer to buffer receiving the response.
bufsize | Size of the buffer in bytes.
Returns

TRUE if a response line retrieved, else FALSE.

Use this function to read full response lines returned from the instrument. The response line is returned without the
terminating CRLF. Therefore TRUE may be returned even if the resulting line is empty. The returned line always ends to
the NUL character even if FALSE is returned.

If the caller’s buffer is too small to hold the whole response line, as much as fits to the buffer is returned and the rest is
returned on subsequent call(s).

Thermo Fisher Scientific SPA Ratastie 2 FIN-01621 Vantaa, Finland www.thermo.com

12 Using ThermoCOM

2.2.8 ThermoCOMReadBinary

Read received data. Full declaration: ThermoCOMReadBinary().

Parameters
hComm | Connection handle returned from a call to ThermoCOMOpen().
buf | Pointer to buffer receiving the data.
bufsize | Size of the buffer in bytes.
Returns

Number of bytes copied to the user buffer.

Unlike function ThermoCOMRead(), this function returns all data received from the instrument without doing any interpre-
tation on it. Note however that the XON and XOFF characters are filtered by the serial port driver when XON/XOFF flow
control is used. You can control the number of bytes returned with the bufsize parameter.

If the return value is less than the given bufsize parameter, there is no more data.

Thermo Fisher Scientific SPA Ratastie 2 FIN-01621 Vantaa, Finland www.thermo.com

2.2 Exported functions 13

2.2.9 ThermoCOMWrite

Write a string to the transmit buffer. Full declaration: ThermoCOMWrite().

Parameters

hComm | Connection handle returned from a call to ThermoCOMOpen().

buf | Buffer containing the NUL terminated string to send.

Returns

TRUE if string written to the transmit buffer, else FALSE.

When this function returns, the string is not yet sent to the instrument but is queued for sending. Memory for transmit
data is dynamically allocated and the only reason for this function returning FALSE is that no more memory is available. If
FALSE is returned, the string is not even partially written to transmit buffer and the application should retry with the whole
string at a later time.

Thermo Fisher Scientific SPA Ratastie 2 FIN-01621 Vantaa, Finland www.thermo.com

14 Using ThermoCOM

2210 ThermoCOMWriteBinary

Write binary data to the transmit buffer. Full declaration: ThermoCOMWriteBinary().

Parameters
hComm | Connection handle returned from a call to ThermoCOMOpen().
buf | Buffer containing the data to send.
count | Number of bytes to send from the buffer.
Returns

TRUE if data written to the buffer, else FALSE.

When this function returns, the data is not yet sent to the instrument but is queued for sending. Memory for transmit data is
dynamically allocated and the only reason for this function returning FALSE is that no more memory is available. If FALSE
is returned, the data is not even partially written to transmit buffer and the application should retry with all data at a later
time.

Thermo Fisher Scientific SPA Ratastie 2 FIN-01621 Vantaa, Finland www.thermo.com

2.2 Exported functions

15

2.2.11 ThermoCOMGetError

Return the error code stored to the connection structure. Full declaration: ThermoCOMGetError().

Thermo Fisher Scientific SPA Ratastie 2 FIN-01621 Vantaa, Finland www.thermo.com

16 Using ThermoCOM

2.2.12 ThermoCOMAbort

Send Abort command to instrument. Full declaration: ThermoCOMAbort().

Parameters

\ hComm \ Connection handle returned from a call to ThermoCOMOpen().

Returns

None

This function first flushes the transmit buffer and also cancels transmission of any data already in the serial port driver. It
then sends characters ESC (Abort) and XON to the serial port.

Thermo Fisher Scientific SPA Ratastie 2 FIN-01621 Vantaa, Finland www.thermo.com

Chapter 3

File Index

3.1

File List

Here is a list of all files with brief descriptions:

api.h

Part of ThermoCOM dll documentation 19
mainpage.h

Start page of ThermoCOM.dIl Design Description 19
ThermoCOM.c

Implements serial port interface to Thermo microplate instruments 19

ThermoCOM.h
Functions exported from ThermoCOM.dIl 24

18

File Index

Thermo Fisher Scientific SPA Ratastie 2 FIN-01621 Vantaa, Finland www.thermo.com

Chapter 4

File Documentation

4.1 api.h File Reference

Part of ThermoCOM dIl documentation.

4.2 mainpage.h File Reference

Start page of ThermoCOM.dIl Design Description.

4.3 ThermoCOM.c File Reference

Implements serial port interface to Thermo microplate instruments.

Functions

* HANDLE WINAPI ThermoCOMOpen (DWORD PortNumber, DWORD baud, LPCSTR InstrumentName, LPCSTR
SerialNumber)

Open the requested serial port and check whether an instrument with the requested serial number is connected to the port.
+ HANDLE WINAPI ThermoCOMOpenSimulator (LPCSTR pipeName)

Open a pipe to a communication port of an instrument simulator.
+ BOOL WINAPI ThermoCOMSetParam (HANDLE hConn, DWORD baud, DWORD handshake)

Set the baud rate of the serial port.
+ void WINAPI ThermoCOMClose (HANDLE hComm)

Close a serial port connection.
+ BOOL WINAPI ThermoCOMAttachEvent (HANDLE hConn, UINT evCode, HANDLE object)

Attach an event object to a serial port connection.
+ BOOL WINAPI ThermoCOMAttachMsg (HANDLE hConn, HWND hWnd, UINT msg, UINT evCode)

Attach an event message to a serial port connection.
+ BOOL WINAPI ThermoCOMRead (HANDLE hConn, LPSTR buf, DWORD bufsize)

Read a received response line.
+ DWORD WINAPI ThermoCOMReadBinary (HANDLE hConn, LPSTR buf, DIWORD bufsize)

Read received data.
+ BOOL WINAPI ThermoCOMWrite (HANDLE hConn, LPCSTR buf)

Write a string to the transmit buffer.

20 File Documentation

+ BOOL WINAPI ThermoCOMWriteBinary (HANDLE hConn, LPCSTR buf, DWORD count)

Write binary data to the transmit buffer.
+ void WINAPI ThermoCOMAbort (HANDLE hConn)

Send Abort command to instrument.
* DWORD WINAPI ThermoCOMGetError (HANDLE hConn)

Return the error code stored to the connection structure.

4.3.1 Detailed Description
Note

Copyright by Thermo Fisher Scientific Oy 2015

Definition in file ThermoCOM.c.

4.3.2 Function Documentation

4.3.2.1 void WINAPI ThermoCOMAbort (HANDLE hConn)

Parameters

hComm \ Connection handle returned from a call to ThermoCOMOpen().

Returns

None

This function first flushes the transmit buffer and also cancels transmission of any data already in the serial port driver. It
then sends characters ESC (Abort) and XON to the serial port.

Definition at line 1843 of file ThermoCOM.c.

4.3.2.2 BOOL WINAPI ThermoCOMAttachEvent (HANDLE hConn, UINT evCode, HANDLE object)

Parameters

hComm | Connection handle returned from a call to ThermoCOMOpen().

evCode | Event(s) to signal.

object | Handle of an event object.

Returns

None

Parameter ‘evCode’ may be any combination of THERMOCOM_RECEIVE, THERMOCOM_TRANSMIT and THERMOC-
OM_ERROR. The event object is set to signaled state whenever any of the selected event(s) occurs.

Parameter 'object’ is a handle of a Windows event object. If NULL, the selected events will not be signaled.
This function may be called repeatedly to set up a different event object for each event.

The THERMOCOM_RECEIVE event is signaled whenever something is written to the receive buffer. There is no quarantee
that a whole response line is received or that only one response line is received. therefore upon receiving this event the
application should call ThermoCOMRead() or ThermoCOMReadBinary as long as they return data.

The THERMOCOM_TRANSMIT event is signaled when the last data from the transmit buffer is sent. It can be used as
flow control: If new data is not sent untii THERMOCOM_TRANSMIT event is received, functions ThermoCOMWrite() and
ThermoCOMWriteBinary() will never fail.

Thermo Fisher Scientific SPA Ratastie 2 FIN-01621 Vantaa, Finland www.thermo.com

4.3 ThermoCOM.c File Reference 21

Definition at line 1464 of file ThermoCOM.c.

4.3.2.3 BOOL WINAPI ThermoCOMAttachMsg (HANDLE hConn, HWND hWnd, UINT msg, UINT evCode)

Parameters

hComm | Connection handle returned from a call to ThermoCOMOpen().

hWhnd | Handle of the window to receive the message.

msg | Message id of the message to send.

evCode | Event(s) for which a message is sent.

Returns

None

A message with message id ‘'msg’ is sent to window 'hWnd’ whenever any of the event(s) selected with parameter ’evCode’
occurs. Parameter 'evCode’ may be any combination of THERMOCOM_RECEIVE, THERMOCOM_TRANSMIT and THE-
RMOCOM_ERROR. The event code is passed to the application in the wParam member of the message structure.

The THERMOCOM_RECEIVE event is sent whenever something is written to the receive buffer. There is no quarantee
that a whole response line is received or that only one response line is received. therefore upon receiving this event the
application should call ThermoCOMRead() or ThermoCOMReadBinary as long as they return data.

The THERMOCOM_TRANSMIT event is sent when the last data from the transmit buffer is sent. It can be used as
flow control: If new data is not sent untii THERMOCOM_TRANSMIT event is received, functions ThermoCOMWrite() and
ThermoCOMWriteBinary() will never fail.

Definition at line 1518 of file ThermoCOM.c.

4.3.2.4 void WINAPI ThermoCOMClose (HANDLE hComm)

Parameters

hComm \ Connection handle returned from a call to ThermoCOMOpen().

Returns

None.

All open connections are automatically closed when the dll is unloaded, but it is good programming practise to close them
explicitly when no longer used.

Definition at line 1377 of file ThermoCOM.c.

4.3.2.5 DWORD WINAPI ThermoCOMGetError (HANDLE hConn)

Parameters

\ hComm \ Connection handle returned from a call to ThermoCOMOpen().

Returns
Windows system error code.
The application may call this function after receiving the THERMOCOM_ERROR event. The returned error code may or

may not give a clue about what the actual problem is. If an error is reported, data is already lost and the best action for the
application to do is to close the connection and then try to reopen it.

A call to ThermoCOMGetError() resets the stored error code to ERROR_SUCCESS.
Definition at line 1890 of file ThermoCOM.c.

Thermo Fisher Scientific SPA Ratastie 2 FIN-01621 Vantaa, Finland www.thermo.com

22

File Documentation

4.3.2.6 HANDLE WINAPI ThermoCOMOpen (DWORD PortNumber, DWORD baud, LPCSTR InstrumentName, LPCSTR SerialNumber)

Parameters
PortNumber | The Windows serial port number to open.
baud | The baudrate to use.
InstrumentName | The name of the instrument. If not NULL, the name the instrument returns to a version query must match
this string.
SerialNumber | The serial number of the instrument. If not NULL, the serial number the instrument returns to a version
query must match this string.
Returns

A handle to the opened communication channel. This handle must be passed to subsequent calls to the other functions
in this library. If the channel could not be opened, NULL is returned.

This function (or ThermoCOMOpenSimulator) must be called first before using any other functions in the library. Only one
connection per communication port is allowed.

If either InstrumentName or SerialNumber, or both, are defined, a VER command is sent to the serial port, and these
arguments are checked against the returned response. If there is a mismatch, the port is closed and NULL is returned.

If both InstrumentName and SerialNumber are NULL, the VER command is not sent. This makes it possible to open a
channel to an instrument which does not support the VER command. In this case it is the responsibility of the application
to check what if anything is connected to the serial port.

Definition at line 1237 of file ThermoCOM.c.

4.3.2.7 HANDLE WINAPI ThermoCOMOpenSimulator (LPCSTR pipeName)

Parameters

pipeName

Name of the named pipe used for simulating the communication port. The pipe must have been created by
the simulated port driver of the instrument simulator.

Returns

Communication handle to the simulator, NULL if the function fails.

This function (or ThermoCOMOpen) must be called first before using any other functions in the library. Only one connection
per device is allowed. Standard names of the pipes used for simulating communication ports are:

« Serial port: \OxXXXXXCOM

* Debug port: \OxXXXXXDBG

+ USB port: \OxXXXXUSB

LAN port: \OxXXXXLAN

The XXXX in all pipe names is the ProductID of the device in hex.
Definition at line 1288 of file ThermoCOM.c.

4.3.2.8 BOOL WINAPI ThermoCOMRead (HANDLE hConn, LPSTR buf, DWORD bufsize)

Parameters

hComm

Connection handle returned from a call to ThermoCOMOpen().

buf

Pointer to buffer receiving the response.

bufsize

Size of the buffer in bytes.

Thermo Fisher Scientific SPA Ratastie 2 FIN-01621 Vantaa, Finland www.thermo.com

4.3 ThermoCOM.c File Reference 23

Returns

TRUE if a response line retrieved, else FALSE.

Use this function to read full response lines returned from the instrument. The response line is returned without the
terminating CRLF. Therefore TRUE may be returned even if the resulting line is empty. The returned line always ends to
the NUL character even if FALSE is returned.

If the caller’'s buffer is too small to hold the whole response line, as much as fits to the buffer is returned and the rest is
returned on subsequent call(s).

Definition at line 1557 of file ThermoCOM.c.

4.3.29 DWORD WINAPI ThermoCOMReadBinary (HANDLE hConn, LPSTR buf, DWORD bufsize)

Parameters
hComm | Connection handle returned from a call to ThermoCOMOpen().
buf | Pointer to buffer receiving the data.
bufsize | Size of the buffer in bytes.
Returns

Number of bytes copied to the user buffer.

Unlike function ThermoCOMRead(), this function returns all data received from the instrument without doing any interpre-
tation on it. Note however that the XON and XOFF characters are filtered by the serial port driver when XON/XOFF flow
control is used. You can control the number of bytes returned with the bufsize parameter.

If the return value is less than the given bufsize parameter, there is no more data.

Definition at line 1733 of file ThermoCOM.c.

4.3.2.10 BOOL WINAPI ThermoCOMSetParam (HANDLE hConn, DWORD baud, DWORD handshake)

Parameters

hConn | Connection handle returned from a call to ThermoCOMOpen().

baud | The baud rate to set.

handshake | The handshake to set.

Returns

TRUE on success, else FALSE.

It is recommended to use on of the standard baudrates from 110 to 256000. Using a non standard baudrate may lead to
too high bit time error for the communication to work.

The handshake must be one of HSK_NONE, HSK_XONXOFF and HSK_RTSCTS. Thermo microplate instruments use
the HSK_XONXOFF handshake with the exception of some very old models.

Definition at line 1347 of file ThermoCOM.c.

4.3.2.11 BOOL WINAPI ThermoCOMWrite (HANDLE hConn, LPCSTR buf)

Parameters

hComm | Connection handle returned from a call to ThermoCOMOpen().

buf | Buffer containing the NUL terminated string to send.

Thermo Fisher Scientific SPA Ratastie 2 FIN-01621 Vantaa, Finland www.thermo.com

24 File Documentation

Returns

TRUE if string written to the transmit buffer, else FALSE.

When this function returns, the string is not yet sent to the instrument but is queued for sending. Memory for transmit
data is dynamically allocated and the only reason for this function returning FALSE is that no more memory is available. If
FALSE is returned, the string is not even partially written to transmit buffer and the application should retry with the whole
string at a later time.

Definition at line 1781 of file ThermoCOM.c.

4.3.2.12 BOOL WINAPI ThermoCOMWriteBinary (HANDLE hConn, LPCSTR buf, DWORD count)

Parameters
hComm | Connection handle returned from a call to ThermoCOMOpen().
buf | Buffer containing the data to send.
count | Number of bytes to send from the buffer.
Returns

TRUE if data written to the buffer, else FALSE.

When this function returns, the data is not yet sent to the instrument but is queued for sending. Memory for transmit data is
dynamically allocated and the only reason for this function returning FALSE is that no more memory is available. |If FALSE
is returned, the data is not even partially written to transmit buffer and the application should retry with all data at a later
time.

Definition at line 1805 of file ThermoCOM.c.

4.4 ThermoCOM.h File Reference

Functions exported from ThermoCOM.dII.

Macros

+ #define THERMOCOM_RECEIVE 1

Data received event.
 #define THERMOCOM_TRANSMIT 2

Data transmitted event.
 #define THERMOCOM_ERROR 4

Fatal error event.
» #define HSK_NONE 0

Do not use any handshake on serial port.
 #define HSK_XONXOFF 1
* #define HSK_RTSCTS 2

Use hardware handshake on serial port.

Functions

* DIIExport HANDLE WINAPI ThermoCOMOpen (DWORD PortNumber, DWORD baud, LPCSTR InstrumentName,
LPCSTR SerialNumber)

Open the requested serial port and check whether an instrument with the requested serial number is connected to the port.

Thermo Fisher Scientific SPA Ratastie 2 FIN-01621 Vantaa, Finland www.thermo.com

4.4 ThermoCOM.h File Reference

25

4.4.1
Note

DIlExport HANDLE WINAPI ThermoCOMOpenSimulator (LPCSTR pipeName)

Open a pipe to a communication port of an instrument simulator.
DIIExport void WINAPI ThermoCOMClose (HANDLE hComm)

Close a serial port connection.
DllExport BOOL WINAPI ThermoCOMSetParam (HANDLE hConn, DWORD baud, DWORD handshake)

Set the baud rate of the serial port.
DIlExport BOOL WINAPI ThermoCOMAttachEvent (HANDLE hConn, UINT evCode, HANDLE object)

Attach an event object to a serial port connection.
DIIExport BOOL WINAPI ThermoCOMAttachMsg (HANDLE hConn, HWND hWnd, UINT msg, UINT evCode)

Attach an event message to a serial port connection.
DIIExport BOOL WINAPI ThermoCOMRead (HANDLE hConn, LPSTR buf, DWORD bufsize)

Read a received response line.
DllExport DWORD WINAPI ThermoCOMReadBinary (HANDLE hConn, LPSTR buf, DWORD bufsize)

Read received data.
DIIExport BOOL WINAPI ThermoCOMWrite (HANDLE hConn, LPCSTR buf)

Write a string to the transmit buffer.
DIIExport BOOL WINAPI ThermoCOMWriteBinary (HANDLE hConn, LPCSTR buf, DWORD count)

Write binary data to the transmit buffer.
DIIExport DWORD WINAPI ThermoCOMGetError (HANDLE hConn)

Return the error code stored to the connection structure.
DlIExport void WINAPI ThermoCOMAbort (HANDLE hConn)

Send Abort command to instrument.

Detailed Description

Copyright by Thermo Fisher Scientific Oy 2015

Serial port interface to Thermo microplate instruments.

Definition in file ThermoCOM.h.

4.4.2

4.4.21

Macro Definition Documentation

#define HSK_NONE 0

Definition at line 47 of file ThermoCOM.h.

4.4.2.2 f#define HSK_RTSCTS 2

Definition at line 65 of file ThermoCOM.h.

4.4.2.3 #define HSK_XONXOFF 1

Definition at line 58 of file ThermoCOM.h.

Thermo Fisher Scientific SPA Ratastie 2 FIN-01621 Vantaa, Finland www.thermo.com

26 File Documentation

4.4.2.4 tdefine THERMOCOM_ERROR 4

What the application can do in case of an error is to first call ThermoCOMCIose() and then try to reopen with ThermoCO-
MOpen().

Definition at line 40 of file ThermoCOM.h.
4425 #define THERMOCOM_RECEIVE 1

Definition at line 22 of file ThermoCOM.h.

4.4.2.6 t#define THERMOCOM_TRANSMIT 2

Definition at line 29 of file ThermoCOM.h.

4.4.3 Function Documentation

4.4.3.1 DIIExport void WINAPI ThermoCOMAbort (HANDLE hConn)

Parameters

hComm \ Connection handle returned from a call to ThermoCOMOpen().

Returns

None

This function first flushes the transmit buffer and also cancels transmission of any data already in the serial port driver. It
then sends characters ESC (Abort) and XON to the serial port.

Definition at line 1843 of file ThermoCOM.c.

4.4.3.2 DIIExport BOOL WINAPI ThermoCOMAttachEvent (HANDLE hConn, UINT evCode, HANDLE object)

Parameters

hComm | Connection handle returned from a call to ThermoCOMOpen().

evCode | Event(s) to signal.

object | Handle of an event object.

Returns

None

Parameter ‘evCode’ may be any combination of THERMOCOM_RECEIVE, THERMOCOM_TRANSMIT and THERMOC-
OM_ERROR. The event object is set to signaled state whenever any of the selected event(s) occurs.

Parameter "object’ is a handle of a Windows event object. If NULL, the selected events will not be signaled.
This function may be called repeatedly to set up a different event object for each event.

The THERMOCOM_RECEIVE event is signaled whenever something is written to the receive buffer. There is no quarantee
that a whole response line is received or that only one response line is received. therefore upon receiving this event the
application should call ThermoCOMRead() or ThermoCOMReadBinary as long as they return data.

The THERMOCOM_TRANSMIT event is signaled when the last data from the transmit buffer is sent. It can be used as
flow control: If new data is not sent untii THERMOCOM_TRANSMIT event is received, functions ThermoCOMWfrite() and
ThermoCOMWriteBinary() will never fail.

Thermo Fisher Scientific SPA Ratastie 2 FIN-01621 Vantaa, Finland www.thermo.com

4.4 ThermoCOM.h File Reference 27

Definition at line 1464 of file ThermoCOM.c.

4.4.3.3 DIIExport BOOL WINAPI ThermoCOMAttachMsg (HANDLE hConn, HWND hWnd, UINT msg, UINT evCode)

Parameters

hComm | Connection handle returned from a call to ThermoCOMOpen().

hWhnd | Handle of the window to receive the message.

msg | Message id of the message to send.

evCode | Event(s) for which a message is sent.

Returns

None

A message with message id ‘'msg’ is sent to window 'hWnd’ whenever any of the event(s) selected with parameter ’evCode’
occurs. Parameter 'evCode’ may be any combination of THERMOCOM_RECEIVE, THERMOCOM_TRANSMIT and THE-
RMOCOM_ERROR. The event code is passed to the application in the wParam member of the message structure.

The THERMOCOM_RECEIVE event is sent whenever something is written to the receive buffer. There is no quarantee
that a whole response line is received or that only one response line is received. therefore upon receiving this event the
application should call ThermoCOMRead() or ThermoCOMReadBinary as long as they return data.

The THERMOCOM_TRANSMIT event is sent when the last data from the transmit buffer is sent. It can be used as
flow control: If new data is not sent untii THERMOCOM_TRANSMIT event is received, functions ThermoCOMWrite() and
ThermoCOMWriteBinary() will never fail.

Definition at line 1518 of file ThermoCOM.c.

4.4.3.4 DIIExport void WINAPI ThermoCOMClose (HANDLE hComm)

Parameters

hComm \ Connection handle returned from a call to ThermoCOMOpen().

Returns

None.

All open connections are automatically closed when the dll is unloaded, but it is good programming practise to close them
explicitly when no longer used.

Definition at line 1377 of file ThermoCOM.c.

4.4.3.5 DIIExport DWNORD WINAPI ThermoCOMGetError (HANDLE hConn)

Parameters

\ hComm \ Connection handle returned from a call to ThermoCOMOpen().

Returns
Windows system error code.
The application may call this function after receiving the THERMOCOM_ERROR event. The returned error code may or

may not give a clue about what the actual problem is. If an error is reported, data is already lost and the best action for the
application to do is to close the connection and then try to reopen it.

A call to ThermoCOMGetError() resets the stored error code to ERROR_SUCCESS.
Definition at line 1890 of file ThermoCOM.c.

Thermo Fisher Scientific SPA Ratastie 2 FIN-01621 Vantaa, Finland www.thermo.com

28

File Documentation

4.4.3.6 DIIExport HANDLE WINAPI ThermoCOMOpen (DWORD PortNumber, DWORD baud, LPCSTR InstrumentName, LPCSTR

SerialNumber)

Parameters
PortNumber | The Windows serial port number to open.
baud | The baudrate to use.
InstrumentName | The name of the instrument. If not NULL, the name the instrument returns to a version query must match
this string.
SerialNumber | The serial number of the instrument. If not NULL, the serial number the instrument returns to a version
query must match this string.
Returns

A handle to the opened communication channel. This handle must be passed to subsequent calls to the other functions
in this library. If the channel could not be opened, NULL is returned.

This function (or ThermoCOMOpenSimulator) must be called first before using any other functions in the library. Only one
connection per communication port is allowed.

If either InstrumentName or SerialNumber, or both, are defined, a VER command is sent to the serial port, and these
arguments are checked against the returned response. If there is a mismatch, the port is closed and NULL is returned.

If both InstrumentName and SerialNumber are NULL, the VER command is not sent. This makes it possible to open a

channel to an instrum

ent which does not support the VER command. In this case it is the responsibility of the application

to check what if anything is connected to the serial port.

Definition at line 1237

of file ThermoCOM.c.

4.4.3.7 DIIExport HANDLE WINAPI ThermoCOMOpenSimulator (LPCSTR pipeName)

Parameters

pipeName

Name of the named pipe used for simulating the communication port. The pipe must have been created by
the simulated port driver of the instrument simulator.

Returns

Communication handle to the simulator, NULL if the function fails.

This function (or ThermoCOMOpen) must be called first before using any other functions in the library. Only one connection

per device is allowed.

Standard names of the pipes used for simulating communication ports are:

« Serial port: \OxXXXXCOM

» Debug port: \OxXXXXDBG

* USB port: \OxXXXXUSB

LAN port: \OXXXXXLAN

The XXXX'in all pipe names is the ProductID of the device in hex.

Definition at line 1288

of file ThermoCOM.c.

4.43.8 DIIExport BOOL WINAPI ThermoCOMRead (HANDLE hConn, LPSTR buf, DWORD bufsize)

Parameters

hComm

Connection handle returned from a call to ThermoCOMOpen().

buf

Pointer to buffer receiving the response.

bufsize

Sizeof the bufferimbytes:

Thermo Fisher Scientific SPA Ratastie 2 FIN-01621 Vantaa, Finland www.thermo.com

4.4 ThermoCOM.h File Reference 29

Returns

TRUE if a response line retrieved, else FALSE.

Use this function to read full response lines returned from the instrument. The response line is returned without the
terminating CRLF. Therefore TRUE may be returned even if the resulting line is empty. The returned line always ends to
the NUL character even if FALSE is returned.

If the caller’'s buffer is too small to hold the whole response line, as much as fits to the buffer is returned and the rest is
returned on subsequent call(s).

Definition at line 1557 of file ThermoCOM.c.

4.4.3.9 DIIExport DWORD WINAPI ThermoCOMReadBinary (HANDLE hConn, LPSTR buf, DWORD bufsize)

Parameters
hComm | Connection handle returned from a call to ThermoCOMOpen().
buf | Pointer to buffer receiving the data.
bufsize | Size of the buffer in bytes.
Returns

Number of bytes copied to the user buffer.

Unlike function ThermoCOMRead(), this function returns all data received from the instrument without doing any interpre-
tation on it. Note however that the XON and XOFF characters are filtered by the serial port driver when XON/XOFF flow
control is used. You can control the number of bytes returned with the bufsize parameter.

If the return value is less than the given bufsize parameter, there is no more data.

Definition at line 1733 of file ThermoCOM.c.

4.43.10 DIIExport BOOL WINAPI ThermoCOMSetParam (HANDLE hConn, DWORD baud, DWORD handshake)

Parameters

hConn | Connection handle returned from a call to ThermoCOMOpen().

baud | The baud rate to set.

handshake | The handshake to set.

Returns

TRUE on success, else FALSE.

It is recommended to use on of the standard baudrates from 110 to 256000. Using a non standard baudrate may lead to
too high bit time error for the communication to work.

The handshake must be one of HSK_NONE, HSK_XONXOFF and HSK_RTSCTS. Thermo microplate instruments use
the HSK_XONXOFF handshake with the exception of some very old models.

Definition at line 1347 of file ThermoCOM.c.

4.4.3.11 DIIExport BOOL WINAPI ThermoCOMWrite (HANDLE hConn, LPCSTR buf)

Parameters

hComm | Connection handle returned from a call to ThermoCOMOpen().

buf | Buffer containing the NUL terminated string to send.

Thermo Fisher Scientific SPA Ratastie 2 FIN-01621 Vantaa, Finland www.thermo.com

30 File Documentation

Returns

TRUE if string written to the transmit buffer, else FALSE.

When this function returns, the string is not yet sent to the instrument but is queued for sending. Memory for transmit
data is dynamically allocated and the only reason for this function returning FALSE is that no more memory is available. If
FALSE is returned, the string is not even partially written to transmit buffer and the application should retry with the whole
string at a later time.

Definition at line 1781 of file ThermoCOM.c.

4.4.3.12 DIIExport BOOL WINAPI ThermoCOMWriteBinary (HANDLE hConn, LPCSTR buf, DWORD count)

Parameters
hComm | Connection handle returned from a call to ThermoCOMOpen().
buf | Buffer containing the data to send.
count | Number of bytes to send from the buffer.
Returns

TRUE if data written to the buffer, else FALSE.

When this function returns, the data is not yet sent to the instrument but is queued for sending. Memory for transmit data is
dynamically allocated and the only reason for this function returning FALSE is that no more memory is available. If FALSE
is returned, the data is not even partially written to transmit buffer and the application should retry with all data at a later
time.

Definition at line 1805 of file ThermoCOM.c.

Thermo Fisher Scientific SPA Ratastie 2 FIN-01621 Vantaa, Finland www.thermo.com

Index

api.h, 19

HSK_NONE
ThermoCOM.h, 25

HSK_RTSCTS
ThermoCOM.h, 25

HSK_XONXOFF
ThermoCOM.h, 25

mainpage.h, 19

THERMOCOM_ERROR
ThermoCOM.h, 25
THERMOCOM_RECEIVE
ThermoCOM.h, 26
THERMOCOM_TRANSMIT
ThermoCOM.h, 26
ThermoCOM.c, 19
ThermoCOMADbort, 20

ThermoCOMAttachEvent, 20

ThermoCOMAttachMsg, 21
ThermoCOMClose, 21
ThermoCOMGetError, 21
ThermoCOMOpen, 21

ThermoCOMOpenSimulator, 22

ThermoCOMRead, 22
ThermoCOMReadBinary, 23
ThermoCOMSetParam, 23
ThermoCOMWrite, 23
ThermoCOMWriteBinary, 24
ThermoCOM.h, 24
HSK_NONE, 25
HSK_RTSCTS, 25
HSK_XONXOFF, 25
THERMOCOM_ERROR, 25

THERMOCOM_RECEIVE, 26

ThermoCOMADbort, 26

ThermoCOMAttachEvent, 26

ThermoCOMAttachMsg, 27
ThermoCOMClose, 27
ThermoCOMGetError, 27
ThermoCOMOpen, 27

ThermoCOMOpenSimulator, 28

ThermoCOMRead, 28
ThermoCOMReadBinary, 29
ThermoCOMSetParam, 29
ThermoCOMWrite, 29
ThermoCOMWriteBinary, 30

ThermoCOMADbort
ThermoCOM.c, 20
ThermoCOM.h, 26

ThermoCOMAttachEvent
ThermoCOM.c, 20
ThermoCOM.h, 26

ThermoCOMAttachMsg
ThermoCOM.c, 21
ThermoCOM.h, 27

ThermoCOMClose
ThermoCOM.c, 21
ThermoCOM.h, 27

ThermoCOMGetError
ThermoCOM.c, 21
ThermoCOM.h, 27

ThermoCOMOpen
ThermoCOM.c, 21
ThermoCOM.h, 27

ThermoCOMOpenSimulator

ThermoCOM.c, 22
ThermoCOM.h, 28
ThermoCOMRead
ThermoCOM.c, 22
ThermoCOM.h, 28
ThermoCOMReadBinary
ThermoCOM.c, 23
ThermoCOM.h, 29
ThermoCOMSetParam
ThermoCOM.c, 23
ThermoCOM.h, 29
ThermoCOMWrite
ThermoCOM.c, 23
ThermoCOM.h, 29
ThermoCOMWriteBinary
ThermoCOM.c, 24
ThermoCOM.h, 30

	KingFisher Presto Integration Guide
	Introduction
	Related Documentation
	Safety and Special Notices
	Contacting Us

	KingFisher Presto Developer's Guide
	KingFisher Presto Developer's Guide
	Contents
	Confidential
	Introduction

	System Description
	Interfacing to KFModule.dll
	Building the Integration Sample
	Running Tests with KingFisher Presto Simulator

	Creating and Uploading Protocols
	BindIt Protocol Editor
	Creating `¨My Test Protocol`¨
	Uploading `¨My Test Protocol`¨
	Uploading and Downloading Protocols

	Protocol Execution Methods
	Step-by-Step Execution
	Event-Based Execution
	Executing Multiple Overlapping Protocols
	Precautions for Heater Control

	Error Handling
	Communication Interfaces
	Communication Protocol
	KingFisher Presto Protocol Integrity

	KingFisher Presto Interface Specification
	KingFisher Presto Interface Specification
	Contents
	Confidential
	Introduction

	Hardware Requirements
	RS232
	Abort

	USB
	Sending commands to the instrument
	Receiving responses from the instrument
	Abort
	Flow Control

	LAN
	Abort

	Communication Protocol
	General
	Character Encoding
	Maximum Line Width
	XML Format
	Attributes and Tag Data
	Root Tag Types
	<Cmd> - Commands
	<Res> - Responses
	<Evt> - Events

	Error Handling
	Error Codes
	Warning Codes

	Commands and Responses
	Abort
	Acknowledge
	Connect
	Disconnect
	DownloadProtocol
	ErrorAcknowledge
	GetProtocolDuration
	GetProtocolTimeLeft
	GetStatus
	ListProtocols
	RemoveProtocol
	Rotate
	SetTemperatureReporting
	StartProtocol
	Stop
	UploadProtocol

	Events
	Aborted
	ChangeMagnets
	ChangePlate
	Error
	LoadPlate
	Pause
	ProtocolTimeLeft
	Ready
	RemovePlate
	StepStarted
	Temperature

	Appendix - XML path syntax

	KFModule.dll Interface Specification
	KFModuleDll Interface Specification
	Using KFModuleDll
	About
	Exported functions
	KFModule_OpenUsb
	KFModule_OpenSerial
	KFModule_OpenLan
	KFModule_ListLanDevices
	KFModule_OpenSimulator
	KFModule_Close
	KFModule_Connect
	KFModule_Disconnect
	KFModule_AttachEvent
	KFModule_AttachMsg
	KFModule_AttachCallback
	KFModule_Send
	KFModule_Abort
	KFModule_ReadReceived
	KFModule_ReadResponse
	KFModule_ReadEvent
	KFModule_UploadProtocol
	KFModule_DownloadProtocol
	KFModule_GetError

	File Index
	File List

	File Documentation
	api.h File Reference
	KFModuleDll.c File Reference
	Detailed Description
	Function Documentation
	KFModule_Abort
	KFModule_AttachCallback
	KFModule_AttachEvent
	KFModule_AttachMsg
	KFModule_Close
	KFModule_Connect
	KFModule_Disconnect
	KFModule_DownloadProtocol
	KFModule_GetError
	KFModule_ListLanDevices
	KFModule_OpenLan
	KFModule_OpenSerial
	KFModule_OpenSimulator
	KFModule_OpenUsb
	KFModule_ReadEvent
	KFModule_ReadReceived
	KFModule_ReadResponse
	KFModule_Send
	KFModule_UploadProtocol

	KFModuleDll.h File Reference
	Detailed Description
	Macro Definition Documentation
	KF_PRESTO_PID
	KFMODULE_ERROR
	KFMODULE_EVENT
	KFMODULE_RECEIVE
	KFMODULE_RESPONSE
	KFMODULE_TRANSMIT

	Enumeration Type Documentation
	KFM_ERROR
	KFM_SIMULATOR_PORT

	Function Documentation
	KFModule_Abort
	KFModule_AttachCallback
	KFModule_AttachEvent
	KFModule_AttachMsg
	KFModule_Close
	KFModule_Connect
	KFModule_Disconnect
	KFModule_DownloadProtocol
	KFModule_GetError
	KFModule_ListLanDevices
	KFModule_OpenLan
	KFModule_OpenSerial
	KFModule_OpenSimulator
	KFModule_OpenUsb
	KFModule_ReadEvent
	KFModule_ReadReceived
	KFModule_ReadResponse
	KFModule_Send
	KFModule_UploadProtocol

	mainpage.h File Reference

	Index

	ThermoUSB.dll Interface Specification
	ThermoUSB dll Interface Specification
	Using ThermoUSB
	About
	Exported functions
	ThermoUSBOpen
	ThermoUSBClose
	ThermoUSBAttachEvent
	ThermoUSBAttachMsg
	ThermoUSBRead
	ThermoUSBReadBinary
	ThermoUSBWrite
	ThermoUSBWriteBinary
	ThermoUSBGetError
	ThermoUSBAbort
	ThermoUSBGetThermoVendorId

	File Index
	File List

	File Documentation
	api.h File Reference
	mainpage.h File Reference
	ThermoUSB.c File Reference
	Detailed Description
	Function Documentation
	ThermoUSBAbort
	ThermoUSBAttachEvent
	ThermoUSBAttachMsg
	ThermoUSBClose
	ThermoUSBGetError
	ThermoUSBGetThermoVendorId
	ThermoUSBOpen
	ThermoUSBRead
	ThermoUSBReadBinary
	ThermoUSBWrite
	ThermoUSBWriteBinary

	ThermoUSB.h File Reference
	Detailed Description
	Macro Definition Documentation
	THERMOUSB_ERROR
	THERMOUSB_RECEIVE
	THERMOUSB_TRANSMIT

	Function Documentation
	ThermoUSBAbort
	ThermoUSBAttachEvent
	ThermoUSBAttachMsg
	ThermoUSBClose
	ThermoUSBGetError
	ThermoUSBGetThermoVendorId
	ThermoUSBOpen
	ThermoUSBRead
	ThermoUSBReadBinary
	ThermoUSBWrite
	ThermoUSBWriteBinary

	ThermoLAN.dll Interface Specification
	ThermoLAN dll Interface Specification
	Using ThermoLAN
	About
	Exported functions
	ThermoLANListDevices
	ThermoLANOpen
	ThermoLANClose
	ThermoLANWrite
	ThermoLANRead
	ThermoLANAttachEvent
	ThermoLANAbort
	ThermoLANGetError

	File Index
	File List

	File Documentation
	api.h File Reference
	mainpage.h File Reference
	ThermoLANWrapper.cpp File Reference
	Detailed Description
	Function Documentation
	ThermoLANAbort
	ThermoLANAttachEvent
	ThermoLANClose
	ThermoLANGetError
	ThermoLANListDevices
	ThermoLANOpen
	ThermoLANRead
	ThermoLANWrite

	ThermoLANWrapper.h File Reference
	Detailed Description
	Function Documentation
	ThermoLANAbort
	ThermoLANAttachEvent
	ThermoLANClose
	ThermoLANGetError
	ThermoLANListDevices
	ThermoLANOpen
	ThermoLANRead
	ThermoLANWrite

	ThermoCOM.dll Interface Specification
	ThermoCOM dll Interface Specification
	Using ThermoCOM
	About
	Exported functions
	ThermoCOMOpen
	ThermoCOMOpenSimulator
	ThermoCOMClose
	ThermoCOMSetParam
	ThermoCOMAttachEvent
	ThermoCOMAttachMsg
	ThermoCOMRead
	ThermoCOMReadBinary
	ThermoCOMWrite
	ThermoCOMWriteBinary
	ThermoCOMGetError
	ThermoCOMAbort

	File Index
	File List

	File Documentation
	api.h File Reference
	mainpage.h File Reference
	ThermoCOM.c File Reference
	Detailed Description
	Function Documentation
	ThermoCOMAbort
	ThermoCOMAttachEvent
	ThermoCOMAttachMsg
	ThermoCOMClose
	ThermoCOMGetError
	ThermoCOMOpen
	ThermoCOMOpenSimulator
	ThermoCOMRead
	ThermoCOMReadBinary
	ThermoCOMSetParam
	ThermoCOMWrite
	ThermoCOMWriteBinary

	ThermoCOM.h File Reference
	Detailed Description
	Macro Definition Documentation
	HSK_NONE
	HSK_RTSCTS
	HSK_XONXOFF
	THERMOCOM_ERROR
	THERMOCOM_RECEIVE
	THERMOCOM_TRANSMIT

	Function Documentation
	ThermoCOMAbort
	ThermoCOMAttachEvent
	ThermoCOMAttachMsg
	ThermoCOMClose
	ThermoCOMGetError
	ThermoCOMOpen
	ThermoCOMOpenSimulator
	ThermoCOMRead
	ThermoCOMReadBinary
	ThermoCOMSetParam
	ThermoCOMWrite
	ThermoCOMWriteBinary

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

