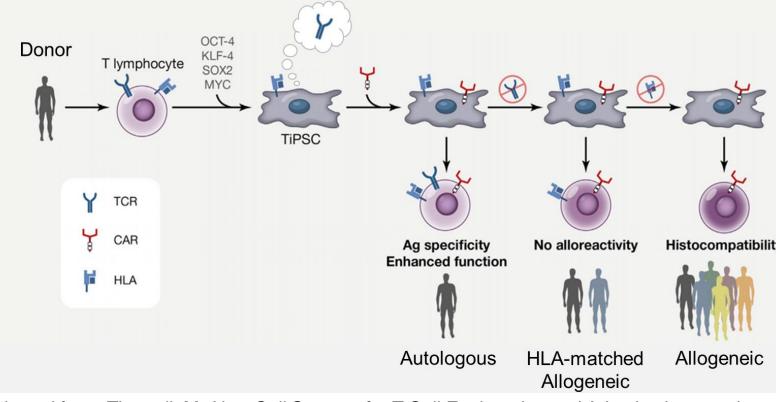
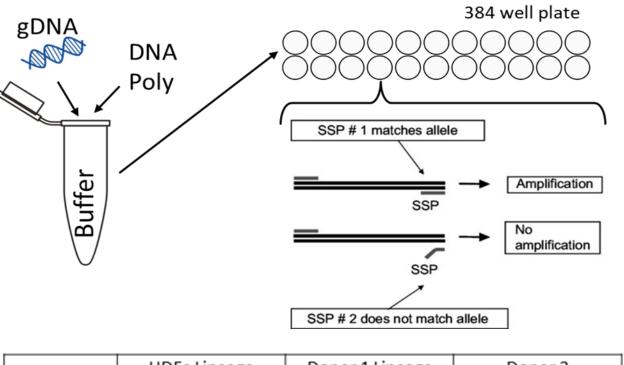

Molecular Characterization of T Cell Receptor and HLA in **T cell Derived iPSCs**

<u>Stephanie Switalski^{1,2}, Suman Pradhan¹, Uma Lakshmipathy¹</u>

¹Thermo Fisher Scientific, Carlsbad CA, ²California Polytechnic State University (Cal Poly), San Luis Obispo, CA

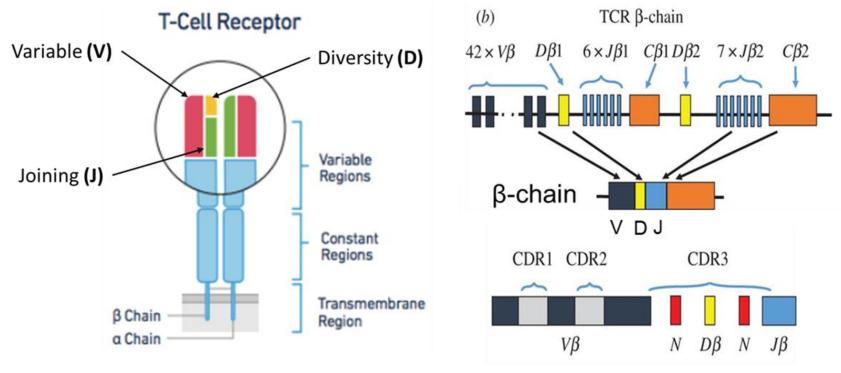



Α

As the immunotherapy market continues to grow, significant progress has been made in treating diseases and cancer by leveraging the potential of immune cells, particularly T cells. Autologous CAR T cell therapy has shown high levels of complete remission in treatment of blood-based cancers, but the personalized medicine is hard to scale. Off-the-self, allogeneic CAR T treatments derived from donor T cells are being explored as a potential to address issues with the autologous treatments. CAR T cell therapies could be advanced through the use of induced pluripotent stem cells (iPSC) iPSCs derived from T cells offer advantages over traditional somatic cell iPSCs by conservation of T cell receptor (TCR) through reprogramming. Additionally, the ability to engineer chimeric antigen receptors (CAR) into iPSCs, which can then be expanded and differentiated back to T cells, provides a cost-effective method to generate large number of allogeneic CAR-T cells. The therapeutic success of such allogeneic T cell therapies can be further increased with highresolution HLA typing to reduce the risk of any post-transplant complications.

utilized for the comparison and thorough characterization of TCR and HLA in iPSCs derived from Fibroblast, PBMC and T cells. The parental lines and iPSC clones that were subjected to comprehensive characterization to confirm pluripotency were used for downstream molecular characterization. Since reprogramming is carried out from a heterogeneous population of T cells, it is important to understand the parental cell type. Next Generation Sequencing-based Immune Repertoire was used to generate high-throughput sequencing data of TCR^β populations. These assays revealed the diversity, or the number of unique TCR sequences, present in the starting T cells and the resulting iPSC clones. Further, HLA typing was carried out on the parental cells and iPSC clones to track cell lineages and qualify the cells for use in immune therapy applications. The development a robust workflow to characterize the starting immune cell population and the iPSC lines will benefit the development of translational therapies.

INTRODUCTION



	HDFa Lineage		Donor 1 Lineage		Donor 3	
HLA-A	A2	A31	A2	A11	A2	A68
HLA-B	B18	B51	B7	B35	B27	B60
HLA-C	Cw7	Cw14	Cw4	Cw7	Cw2	Cw10
HLA-DRB1	DR11	DR14	DR4	DR14	DR1	DR13
HLA-DRB345	DR 52	-	DR52	DR53	DR52	-
HLA-DQA1	DQA1*01	DQA1*05	DQA1*01	DQA1*03	DQA1*01	DQA1*01
HLA-DQB1	DQ5	DQ7	DQ5	DQ7	DQ5	DQ6
HLA-DPA1	DPA1*01	DPA1*01	DPA1*01	DPA1*01	DPA1*01	DPA1*01
HLA-DPB1	EDP02	EDP12	EDP03	EDP04	Could not be	determined
Bw	Bw4	Bw6	Bw6	Bw6	Bw4	Bw6
	Primary HDFa		D1 T cell			

Adapted from: Themeli, M. New Cell Sources for T Cell Engineering and Adoptive Immunotherapy

Induced Pluripotent Stem Cells created from T cells (TiPSCs) have the potential to move the field from autologous to allogeneic therapies. TCRs are created through permanent genomic rearrangements that are unaffected by reprogramming. The unique CDR3 sequence can act like a barcode for any TCR and is often the focus of TCR sequencing. Immune Repertoire refers to the total T cell population.

Adapted from: Murphy, K. Janeway's immunobiology.

HLA typing is essential for all allogeneic cell therapies. Human Leukocyte Antigens (HLA) are responsible for presenting antigens to T cells for recognition as self or foreign. There are 2 classes of proteins and 10 total HLA genes of interest. Low resolution HLA typing provides the allele groups and is easily available though methods like qPCR.

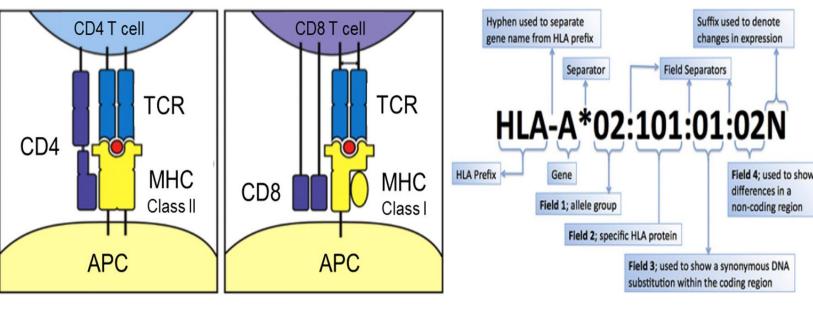
	Donor 6	Lineage	T431L	ineage	Unknown		
HLA-A	A2	A11	A1	A2	A2	A11	
HLA-B	B35	B40	B37	B39	B7	B35	
HLA-C	CW4	CW10	Cw6	Cw10	Cw4	Cw7	
HLA-DRB1	DR4	DR15	DR7	DR10	DR4	DR14	
HLA-DRB345	DR51	DR53	DR53	-	DR52	DR53	
HLA-DQA1	DQA1*01	DQA1*03	DQA1*01	DQA1*02	DQA1*01	DQA1*03	
HLA-DQB1	DQ5	DQ8	DQ2	DQ5	DQ5	DQ7	
HLA-DPA1	DPA1*01	DPA1*01	DPA1*01	DPA1*01	DPA1*01	DPA1*01	
HLA-DPB1	EDP03	EDP06	EDP04	EDP04	EDP03	EDP04	
Bw	Bw6	Bw6	Bw4	Bw6	Bw6	Bw6	
	DGI			T431-13		Sample "D3N1"	
10/10 Match:	0/10 Match: D6 T cell D6N2		T431-14		identified as		
			T431-16		Donor 1		

- a) LinkSēg™ HLA ABCDRDQDP SABR 384 kit is a qPCRbased HLA Typing kit that determines HLA type to a low resolution.
- b) All donor and TiPSC samples had a perfect 10/10 HLA match to each other. There was a clear difference between samples of different sources. Prior to typing, TiPSC sample D3N1 was discovered to not be a Donor 3 clone. Using this method, the Unknown sample was identified as Donor 1 lineage.

Figure 3. Immune Repertoire

Isolate and quantify RNA

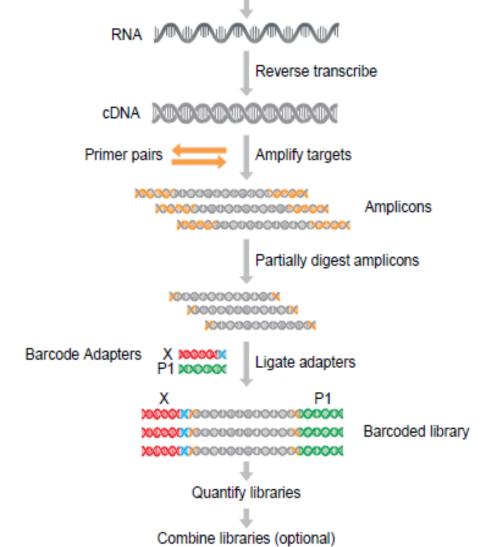
Figure 5. T cell lineage in TiPSC Colonies


	Number of	Largest Clone	%Productive	Number	
Sample	Clones	Frequency	Reads	Productive Reads	
D1P2	16	0.501	16	132234	
D1P3	19	0.525	53	467144	
D1P4	19	0.804	68	697652	
D3P1	15	0.459	52	362828	
D3P2	17	0.810	89	831375	
D5P5	10	0.739	52	388925	
D1N1	10	0.900	87	742157	
D1N3	35	0.772	86	779622	
D1N5	33	0.586	77	874861	
D3N1*	8	0.967	86	795594	
D3N3	11	0.475	81	594308	
D6N2	5	1.000	55	401067	
T431-13	3	0.951	35	276208	
T431-14	-	-	0	10	
T431-16	-	-	0	1221	
D1P1	-	-	0	0	
D5P2	-	-	25	167	
D5P3	-	-	9	260	

Sor	nple	Numbe	r of	Largest Clone	%Productive	Number of	F	
Jai	npie	Clones		Frequency	Reads	Productive Re	uctive Reads	
Dor	or 1	1 48821		0.00777	70.61	1908022		
Dor	or 3	40959		0.00247	67.82	1687972		
Dor	or 5	5 19971		0.01984	68.56	2473244		
Dor	Donor 6 2417		0.09254		68.03	2864301		
T431-2	L3 Fre	quency	CDR3	3 NT				
	0.9	6400037	AGTO	GCTAGTAGGGGTTACT	CCTACGAGCAGTAC			
	0.0	2218007	GCCA	AGCAGCTTAGCGCGG	GATGGGCACGCTGA	AGCTTTC		
Round	1 0.0	0782366	GCCA	AGCAGCTTGGGAGGG	GTTAATGAAAAACT	GTTT		
Nounu	0 .0	0556308	GCCA	AGCAGCTCCCGTGGG	GGTGACACTGAAGC	TTTC		
	0.0	004221	GCCA	AGCAGTTACCCGGGC	AGCTCCTACAATGAG	CAGTTC		
	0.0	0001072	GCCA	AGCAGCTGGGGGGGCT	CGCGGGGGGGCGGGG	AGCTGTTT		
	0.9	5229928	AGTO	GCTAGTAGGGGTTACT	CCTACGAGCAGTAC			
Round	2 0.0	3082089	GCCA	AGCAGCTTGGGAGGG	GTTAATGAAAAACT	GTTT		
	0.0	1687983	GCCA	AGCAGCTTAGCGCGG	GATGGGCACGCTGA	AGCTTTC		

- HLA typing is a useful alternative method of cell lineage tracking. The HLA type for every individual is unique, even at low resolution of typing. Many of the TiPSC clones contained unique HLA alleles that only occurred in their lineage.
 - Low resolution typing by easy-to-use qPCR kit is sensitive enough to identify mislabeled samples.
- There are multiple possible explanations for TiPSC samples containing multiple TCR sequences. One might be due to human error during manual picking. Another possibility is multiple reprogrammed cells form colonies which then merge to create heterogeneous colonies.
 - All possibilities highlight the need for single cell reprogramming and better clone picking techniques.

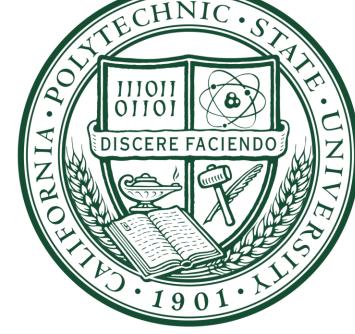
ACKNOWLEDGEMENTS


This study was funded by California Polytechnic State University and the California Institute for Regenerative Medicine.

Adapted from: Murphy, K. Janeway's immunobiology. Choo, S. The HLA System: Genetics, Immunology, Clinical Testing, and Clinical Implications.

MATERIALS AND METHODS

All materials were from Thermo Fisher Scientific unless otherwise stated . Procedures were carried out as per manufacturer's instructions.


The Oncomine TCR Beta-LR Assay uses a TCRβ primer
panel to amplify the TCRB loci prior to Next Generation
Sequencing (NGS). This assay was performed using gDNA
isolated from TiPSC colonies.

- a) Table of TCR β sequencing results from TiPSCs. 5 Clones did not show any productive $\alpha\beta$ TCR rearrangements. %Productive reads and the number of productive TCR reads are important QC metrics. Highlighted samples contain LCF ≥ 80%.
- b) Table of TCR β sequencing results from Donor T cells. Donors have a high number of clones and relatively low largest clone frequencies.
- c) Two rounds of sequencing were performed on T431-13 from different cultures. Although different sequences were present, the top 3 sequences remained the same.

TRADEMARKS/LICENSING

© 2018 Thermo Fisher Scientific Inc. All rights reserved. All trademarks are the property of Thermo Fisher Scientific and its subsidiaries unless otherwise specified. For Research Use Only. Not for use in diagnostic procedures.

