New and improved cellular health evaluation of 2D and 3D cellular models Gambogic Acid treated 3D spheroids using microplate reader assays

Leticia A. Montoya, Bhaskar S. Mandavilli, and Madison Javitz, Thermo Fisher Scientific, 29851 Willow Creek Road, Eugene, Oregon, USA, 97405

ABSTRACT

High throughput screening (HTS) is an effective method for identifying putative active compounds for therapeutics. Assays that evaluate changes in cellular functions are essential for characterizing test compounds and their potential role as pharmaceuticals.

Researchers in drug discovery and cancer research rely on reproducible biological assays to guide medicinal chemistry programs. A current goal in the cancer research field is to explore and expand the use of microplate readers and assay systems into the realm of 3D cellular models for drug discovery in anticancer research, specifically aimed at modelling solid tumors to screen compounds and confirm their activity. In this study, we screened multiple therapeutic drugs using different HTS assays to establish drug dose response curves and to understand the diversity in cell health assays. Despite the lack of guidelines and enabling technologies to study 3D cellular models, we establish the different impact therapeutics have on 2D versus 3D cellular models using existing cellular assays.

RESULTS

Spheroids in Cancer Drug Discovery Relevant pharmacology & better tumor models

3D High Content Screening Platform: CellInsight[™] CX7

Assessing Spheroid Health using High Content Analysis

Enhanced Assay Performance

CellTiter-Blue® (Promega)

PrestoBlue HS (Thermo Fisher Scientific)

PrestoBlue (Thermo Fisher Scientific)

(A)

Nicolsamide (μM)

INTRODUCTION

The ability to use diverse cell health assays allows researchers to monitor different cell health read-outs and target specific cellular responses. The differences in potency and drug incubation time between 2D and 3D models indicate that drug effectiveness is dependent on cellular microenvironment. The ability to use existing microplate tools that are established for 2D cell models in 3D cell models provides a time and cost efficient basis for understanding therapeutic effects on 3D cellular models, allowing for rapid therapeutic characterization in drug discovery with minimal investment.

MATERIALS AND METHODS

When comparing existing cell health assays, we evaluated the differences between PrestoBlue[™] HS and PrestoBlue. The PrestoBlue HS assay has a larger dynamic range, minimal background signal, and allows the removal of hotspots (false-positives). The PrestoBlue HS assay has the lowest detection threshold among the resazurin-based fluorescent assays available for detection of cell viability. With this advantage, the limit of quantification can be studied. Additionally, as an improved reduction potential

Cellulai	Cellulai Auriesiuri,	Fromerative King a
Interactions	Proliferation, & modified genes	Apoptotic core
Micro- environment	Immune Response therapy	Gradients to Oxygen, metabolites &
		nutrients

Resazurin-based Reagents

- PrestoBlue HS

🔶 alamarBlue HS

← PrestoBlue

🔶 alamarBlue

Measuring Cellular Health on microplate reader Varioskan[™] LUX versus High Content Analysis System CX7

Measuring Cellular Health on Monolayer (2D) and Spheroid (3D) Cellular Models

Drug Potency on Monolayer (2D) and Spheroid (3D) Cellular Models: (A) As incubation time increases with gambogic Acid, the drug becomes more potent to 2D monolayer cells. Gambogic Acid is less potent to 3D spheroids than to 2D monolayer cells; shift in IC50 values. (B) High concentrations of Gambogic Acid drug are required to have an effect on spheroid health. Long incubation time (greater than 24 hours) is required with Gambogic Acid to effect Spheroid health.

3D spheroids-on cells-viability-time course

← PrestoBlue HS

← alamarBlue HS

- PrestoBlue

🗕 alamarBlue

(B)

200

1000

Optimization of viability reagents for 3D spheroid analysis

microplate reader.

assay, PrestoBlue HS can be used to interrogate the differences between 2D and 3D cellular models.

We demonstrate that existing microplate assays, such as PrestoBlue High Sensitivity (HS), CyQUANT® XTT, and CyQUANT® Direct, can be used to quantify functional differences between 2D and 3D cellular models. Using all three cell health assays, we found that a longer incubation time with drug is required to have an effect on the health of 3D models compared to 2D models. These results suggest that drug treatment is less potent in 3D models than 2D models, as demonstrated by a shift in the apparent IC50 values. Additionally, the dense compact structure of 3D models is preserved at low to no concentrations of drug, indicating that higher concentrations of drug are required to kill cells grown in 3D culture compared to 2D monolayers.

- High-Content Screening Platforms provide special and temporal resolution.
- High-Content Screening Platforms are equipped with wide field or confocal optics to allow for ease of multiplexing.
- Assays for microplate readers allow for rapid quantification of cell health measurements and enzyme activity.

First Step is determining concentration of reagent. CyQUANT XTT gives a better signal/noise ratio and same IC50 value when used at twice the concentration on Spheroids when compared to one times the concentration on monolayer cellular models.

Using microplater reader Varioskan[™] LUX to drug screen before image analysis on HCA System

Existing solution- and fluorescence-based assays can be analyzed by microplate readers for initial drug discovery questions. Similar IC50 values are determined by using existing assays on the microplate reader and High Content System.

Nocodazole

Second step is determining incubation time with reagent. The incubation time with reagents is extended when working with spheroids when compared to monolayer. Highly treated spheroids presents a very low signal turn-on, further confirming the presence of dead cells.

- CyQUANT[™] Direct Green detection reagent measures DNA content and cytotoxicity of individual cells.
- Solution-based cell viability assays provide information on entire cell populations rather than tracking the behavior of individual cells.
- After some initial optimization, both types of reagents (solution and individual) cell analysis) can be used to analyze cellular function and cellular viability on a microplate reader.

CONCLUSIONS

- Monolayer and Spheroids can be monitored across multiple platforms with multiple different reagents.
- Existing microplate assays can be used to quantify functional differences between 2D and 3D cellular models.
- Pharmaceutical drugs can be analyzed on a microplate as initial studies before further

analysis on imaging platform using existing cell functional assays.

© 2019 Thermo Fisher Scientific Inc. All rights reserved All trademarks are the property of Thermo Fisher cientific and its subsidiaries unless otherwise specified

SCIENTIFIC

CyQUANE XIT

