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Major drivers in cell culture
The first important cell culture parameter is the cell line 
itself: how it is designed, the nature of the expression 
system, and cell line stability—all of which will influence 
process variability. The second driver encompasses 
process parameters for growing cells and controlling 
bioreactors. The third is the cell culture medium and all 
components and supplements used. These are essential 
to producing high-quality proteins that will be safe 
and efficacious. 

While modifications to the cell line and process can require 
extensive time and effort, optimization and supplementation 
of cell culture media offers a rapid option for achieving a 
consistent desired bioproduction outcome. Here we focus 
on process variability, related to both the media and the 
components or supplements within them, and our unique 
solution for leveraging our deep understanding of media to 
achieve consistency.

Introduction
The past 30 years have brought significant progress in the 
design and manufacture of cell culture media as well as in 
the types of components used. With these advances, the 
biopharmaceutical industry has improved its processes 
from producing just a few milligrams of product per liter of 
culture to ≥10 g/L. 

While the industry has achieved higher titers, obtaining 
consistent protein production and protein quality attributes, 
such as glycosylation, is critical in today’s bioproduction 
industry, especially for biosimilar molecules. Historically, 
peptone supplements have been used widely as a basic 
ingredient of microbial media. In the 1990s, peptones 
were introduced as a substitute for serum to achieve high 
expression titers (3–6 g/L). That progress was led by 
two essential forces: the need and desire to reduce the 
risk of adventitious agents (e.g., removal of sera due to 
spongiform encephalopathy contamination in the 1990s) 
and to achieve better process control for higher product 
quality, safety, and efficacy. 

Further requirements for consistency and safety led 
to development of chemically defined media and 
supplements. However, achieving consistent bioproduction 
targets can be a challenge with both chemically defined 
and peptone-containing media. Understanding the effects 
of cell culture media components on the bioproduction 
process is critical to achieving a more consistent 
process. This is in alignment with the spirit of the quality 
by design (QbD) initiative led by the US Food and Drug 
Administration (FDA).



Variability in media
With chemically defined media, the assumption might be 
that because they are made of defined components, they 
should have less variability. But are chemically defined 
media truly devoid of variability?

In the past few years, speakers from leading 
pharmaceutical companies have presented on the impacts 
that raw-material impurities have had on cell culture 
performance and product quality in chemically defined 
media formulations. Trace-metal contaminants coming from 
salts or amino acids also can impact protein production 
levels and product quality attributes. 

For example, manganese as a trace contaminant in iron 
sulfate can affect the glycosylation pattern of a monoclonal 
antibody (mAb). Copper concentrations have also been 
shown to affect cell culture performance and charge 
variants of immunoglobulin G (IgG). Hence, chemically 
defined media made from defined components can have 
impurities that cause process variability. Impurities in basal 
media can overshadow natural variations between different 
lots of peptones, for instance (Figure 1). In every process 
it is critical to identify the source that can contribute to 
process variability.

Media using peptones derived from yeast, soy, or other 
sources to enhance bioproduction can have challenges 
related to inherent biological variability. Strict quality 
controls for manufacturing are key to limiting variability in 
peptones. It is also critical to have process consistency, 
which depends on base medium components as well as 
the combination of base medium and supplement/feed 
composition, and the overall impact of all components 
should be evaluated. 

Achieving consistency: understanding key drivers in 
media for bioproduction processes
To better control variability and achieve consistency 
in a specific process, it is important to understand 
what components in a complete cell culture medium 
formulation are driving culture performance. A key driver 
is a component that has a strong positive or negative 
influence on process performance and must be within an 
optimal range for cultures to achieve optimal performance 
(Figure 2).

Figure 1. Raw material as a source of variation. In this example, 
manganese (Mn), which is known to impact protein quality, was found 
at much higher levels as a trace contaminant in a vitamin present in the 
medium (12–13 ppm) than in the peptone (0.10–0.35 ppm). In the upper 
graph, Mn levels are shown for 23 lots of peptone. In the lower graph, Mn 
levels are shown for the same 23 lots of peptone and 2 lots of media (lots 
24 and 25).
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Figure 2. Identifying a key driver component. Key drivers show 
strong positive or negative influence on performance, have an optimal 
range to achieve target performance, and cause variability in cell 
culture performance.



Identifying key drivers 
Identifying key drivers that affect process variability in a 
cell culture process is not as simple as accumulating and 
examining large amounts of data. To accurately assess 
which components in a complex medium are driving a 
process, it is imperative to identify those components 
showing a statistical correlation of performance across 
multiple lots of a medium or supplement of interest. 

Such analyses are the first step toward identification of 
key drivers in a bioprocess. Furthermore, parameters that 
simply correlate with variability need to be differentiated 
from those that truly cause the variability through statistical 
analysis and experimental data. Finally, for the best 
process performance, optimal ranges need to be defined 
for the key drivers.

In engagements optimizing cell culture media and 
performance with customers, we have worked to identify 
the components driving their processes. We have found 
that keeping nutrients such as nucleosides, vitamins, and 
trace metals within a very specific range can significantly 
affect the performance of a cell culture process. 

Again, it is important to remember that each process 
is different, with its own key drivers, even considering 
when similar base media and supplements are used. 
Using a statistical methodology will correctly identify 
key components and their optimal ranges for each 
specific process.

Predictive modeling
We use a large number of assays to characterize a medium 
or supplement chemically, identifying and quantifying all 
of its potential components. The ultimate goal is to build 
a predictive biostatistical model to predict which lots will 
perform well in a given process. This biostatistical model 
uncovers hidden interactions and drivers by including the 
influence of all components taken together.

With a table of analytical data, we could examine just 
one component at a time, but the model can consider 
everything together—reducing a large number of 
components to just a few key drivers—and ultimately 
provide a predictive tool for media optimization 
and screening.

Development of such a model is an iterative process. 
It requires generating sets of analytical and performance 
data, then building our unique biostatistical models 
designed to mimic biological behavior for correlating the 
analytical and performance data. Further, using proprietary 
mathematical codes, we can reduce the large number 
of analytical attributes to top drivers. Several iterations 
expand the data set to check the model’s accuracy and 
yield a predictive model. These models use different 
types of mathematical equations—additive, semilog, 
and multiplicative—to define the relationship between 
performance and analytical data. 

Applying a simple additive model may offer a good 
model fit but not very good prediction accuracy in some 
cases. Such scenarios require a more complex modeling 
strategy, such as a semilog model, to improve the fit and 
prediction accuracy. A semilog mathematical structure 
can mimic enzyme kinetics and might better explain a 
biological process. 

The final statistical model carries the risk of overfitting the 
data, so a particular model might fit better with a small data 
set but fail as more data are added. As with any statistical 
model, this modeling approach is highly data dependent; 
therefore, an iterative approach for model evolution and 
selection increases robustness and accuracy of the 
final model.



Using a phased approach
We have established a phased approach to developing the 
predictive modeling tool used in the key driver identification 
(KDI) program (Figure 3). To create a statistically sound 
model, first we work with a customer to accumulate 
performance and analytical data on at least 5 to 10 lots of 
cell culture media or supplements.

In phase I, we begin with a small data set (developed 
in the preliminary phase) to build an initial model. A 
comprehensive list of analytes is identified for a limited 
number of lots of media or supplements. These analytes 
include amino acids, vitamins, carbohydrates, trace 
elements, and other components present in cell culture 
media and supplements. This phase yields potential 
drivers and an initial model that can move to the important 
second phase.

Figure 3. Overview of the KDI program. Proprietary, customizable biostatistical models are the workhorses of the KDI program.

Data generation
Performance (customer)

and analytical data
generation

Phase I
Model development and discovery
Initial data analysis and mathematical
model development for potential KDI 

Implementation
Implementation of actions to

address identified key drivers: 

• Micro-additions of key driver
   components 

• Adjusted component
   concentrations 

• Raw material screening 

Phase II
Key driver confirmation 

Testing of assumptions 
utilizing the actual process

to confirm key drivers and identify
necessary model adjustments    

Phase III
Model finalization

Final testing using new material lots
to validate predictive model 

Outputs:
• Potential key drivers
• Initial models 

Outputs:

• Confirmation of key drivers
• Updated models 

Outputs:
Validated

predictive model 

In phase II, we determine the causative nature of key 
drivers. Many components can affect performance, but to 
control process variability, we need to find the key drivers. 
To achieve that, we create several lots of cell culture media 
or supplements with enhanced amounts of potential key 
drivers to determine whether they truly drive (positively or 
negatively) the yield or quality of a bioprocess. 

In phase III, model verification generates a predictive tool to 
test each cell culture medium or supplement lot. Using new 
lots of media or supplements, we perform analytical testing 
to evaluate the model. A customer then evaluates those 
formulations in a small-scale version of the actual process. 
If experimental data match the prediction, then we have a 
locked-down model; if we don’t have an exact match, then 
we may recalibrate the model slightly.

At the conclusion of phase III, we have a predictive tool that 
allows us to select lots that will provide a desired outcome.
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Figure 4. Variation in galactosylation and production as a result of different media. Selection of the optimal medium requires consideration of both 
mAb production and the desired galactosylation profile. 

Leveraging media to achieve desired bioproduction 
goals: chemically defined (CD) media development
Such approaches can be applied to understand the 
impact of media during the media development process. 
Here we present an example of such a screen, in which a 
CHO DHFR cell line was evaluated in 43 CD media, where 
glycosylation profiles were determined in addition to viable 
cell density (VCD) and production. Figure 4 shows the 
total percent galactosylation, which is the sum of all the 
galactosylated species for each media. The short horizontal 
bars represent the production for each medium. The VCD 
is not shown. As seen from the figure, different media result 
in different production and galactosylation levels.

To further evaluate the impact of media composition, a 
biostatistical model was fitted in order to screen data for 
classification and identification of key components in the 
CD media formulations that have strong correlation to 
production and galactosylation (Figure 5).

Figure 5. Identifying key components associated with optimal mAb production and galactosylation profiles. Model score plots show the 
impact of various media components on percent galactosylation and titer. The upper-right quadrant has media components that increase both titer and 
percent galactosylation. The lower-right quadrant has components that decrease titer, but increase percent galactosylation. The lower-left quadrant 
has components that decrease both titer and percent galactosylation. The upper-left quadrant has components that increase titer and decrease 
percent galactosylation.
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A few selected components that had positive correlation 
with production and minimal negative correlation with 
galactosylation were identified for further evaluation and 
were added to condition 42 (a low-production condition) 
to potentially increase production without having a drastic 
negative impact on galactosylation. The addition of group 
1 components to condition 42 resulted in a 40% increase 
in production with minimal impact on galactosylation 
(Figure 6). Hence, such a modeling strategy can provide 
a targeted approach to media optimization for desired 
production and protein quality, especially during the media 
development phase.

Providing consistent performance
Bioprocess variability can be caused by very small 
changes in specific components or impurities in chemically 
defined media. Always consider both sources when you’re 
thinking about controlling those variabilities. It’s important 
to build a statistically significant data set to elucidate those 
components responsible for observed variability. 

We have found an effective way to elucidate key drivers 
from a large data set. It requires an ability to test lots 
of the media components in a small-scale process so 
we can correlate that scale with a production process. 
In addition, we must challenge the model with values 
of components that are outside the normal ranges to 
distinguish the causative nature of some components 
from those that simply correlate. Through predictive 
mathematical modeling, we can achieve consistent 
production performance. 

Figure 6. Impact of group 1 components identified in model. 
(A) Addition of group 1 components to condition 42 results in a 40% 
increase in production. (B) Group 1 components have minimal effect on 
galactosylation. (C) A negative correlation is observed between media 
component 1 and galactosylation.
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