How do I choose the right Cell Factory system for my application?

The Thermo Scientific™ Nunc™ Cell Factory™ system is available in several styles and configurations. The key to selecting the appropriate Cell Factory system is in the answers to these two questions:

1. How many cells do you need to produce per batch?

2. What are your cells used for?
 - Research
 - Process scale-up
 - Pilot scale (non-GMP)
 - GMP production
 - Seeding a larger vessel (e.g., bioreactor) for GMP production
There is a Nunc Cell Factory system for every scale:

Standard Cell Factory system
The standard Nunc Cell Factory system features two standard ports, providing a closed, aseptic system that is ideal for commercial-scale production of large quantities of adherent cells.

EasyFill Cell Factory system
Highly versatile and easy to use, the Thermo Scientific™ Nunc™ EasyFill™ Cell Factory™ system offers a sterile, single-use solution designed to optimize valuable incubator space and reduce repetitious manual handling. Suitable for both research and commercial-scale production.

High Density Cell Factory system
The Thermo Scientific™ Nunc™ High Density Cell Factory system offers 30% more surface area and yield* in the same footprint as the standard Cell Factory system, and is compatible with all standard Cell Factory system accessories. Expand your capacity without consuming valuable manufacturing space.

*The increase in yield may vary depending on the type of cell cultured.

Cell Factory system with active gassing
This proprietary design promotes a uniform culturing environment from layer to layer through the equal distribution of gasses. It is ideal for large-scale manufacturing of stem cells and difficult-to-grow cell lines.

To select the Cell Factory system size you need, simply complete the following steps:

Step 1. Estimate your maximum cell density per Cell Factory layer: (Required cell density, per cm²) x (632 cm²) = cell density, per layer. Example: 10^4 cells/cm² x 632 cm²/layer = 6.3×10^6 cells/layer

Step 2. Calculate the number of layers needed per batch: (Number of cells required per batch)/(cell density, per layer) = number of layers needed. Example: $(6 \times 10^8$ cells/batch)/6.3×10^6 cells/layer = 9.5 layers/batch

Result: A 10-layer Cell Factory system would be an ideal solution for this example.

Step 3. Choose the Cell Factory system that best matches your process and work environment from the application chart provided below.

Application chart

<table>
<thead>
<tr>
<th>Cell Factory system type</th>
<th>High Density</th>
<th>Standard</th>
<th>EasyFill system</th>
<th>Active gassing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of layers</td>
<td>3</td>
<td>13</td>
<td>52</td>
<td>1 2 4 10 40</td>
</tr>
<tr>
<td>Research</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>4 10 40</td>
</tr>
<tr>
<td>Process scale-up</td>
<td>• •</td>
<td>• •</td>
<td>• • •</td>
<td>• • • • • • •</td>
</tr>
<tr>
<td>Pilot-scale (non-GMP)</td>
<td>• •</td>
<td>• •</td>
<td>•</td>
<td>• • • •</td>
</tr>
<tr>
<td>GMP production</td>
<td>• •</td>
<td>• •</td>
<td>• • • • • • •</td>
<td>• • • • • • •</td>
</tr>
<tr>
<td>Seeding a larger vessel (e.g., bioreactor) for GMP production</td>
<td>• •</td>
<td>• •</td>
<td>• • • • • • •</td>
<td>• • • • • • •</td>
</tr>
<tr>
<td>Difficult-to-grow cell lines with pH and environmental sensitivity</td>
<td>• •</td>
<td>• •</td>
<td>• • • • • • •</td>
<td>• • • • • • •</td>
</tr>
</tbody>
</table>

Note: The above are only suggestions. The versatility of the Cell Factory systems enables any size to be used for each of these scales and types.

Find out more at thermofisher.com/cellfactory