
mRNA

manufacturing and analytics

With the recent surge in use of mRNA as a vaccine and therapeutic modality, optimizing and understanding the development and manufacturing of mRNA for biotherapeutics has never been of greater importance.

Use this infographic to guide you through the upstream o and downstream to steps in mRNA manufacture, along with the associated analytics @

DNA TEMPLATE PREPARATION

Template design & plasmid production

into a plasmid.


TARGET GENE DISCOVERY. Target genes are discovered using

techniques such as next-generation sequencing.

PLASMID CREATION. Once a gene

of interest has been identified, the

target sequence can be integrated

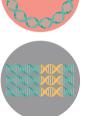
pDNA AMPLIFICATION. Plasmid DNA (pDNA) is amplified in host bacteria, typically E. coli, which grows in a single-use fermenter.

Plasmid purification

DNA at specific sequences.

PURIFICATION

plasmid. LINEARIZATION


With restriction enzymes that cleave

To achieve a high level of supercoiled

PURIFICATION

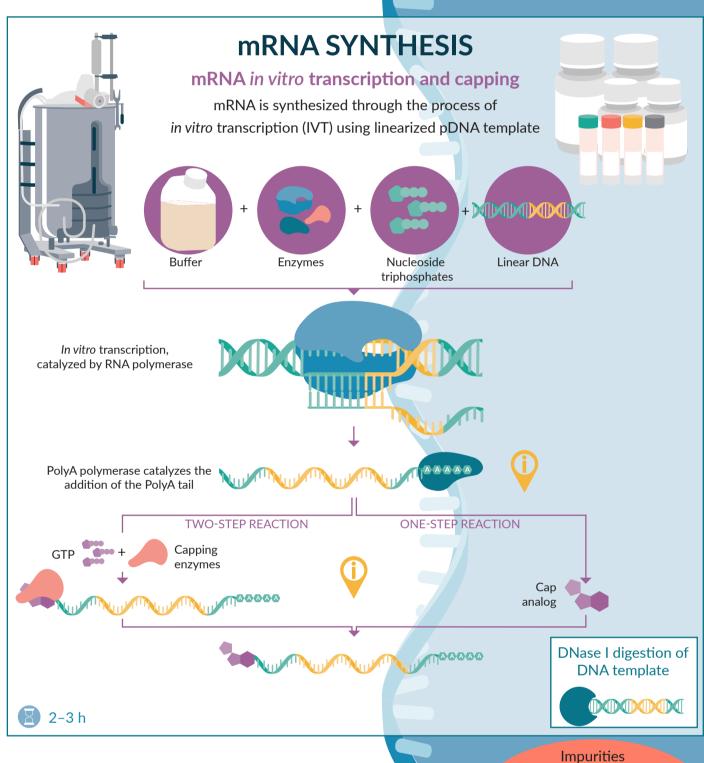
Recovery of the linearized plasmid.

ANALYTICS

Key technologies used to identify impurities are listed below.

Draft guidance is in process and therefore this is subject to change. Other technologies can be used.

Agarose gel electrophoresis: establish plasmid quality level


UV absorbance:

Process-related

impurity quantitation qPCR and RT-qPCR:

mRNA is produced in a cell-free system using non-animal-derived raw materials.

mRNA purification

DOWNSTREAM

This simplifies downstream purification.

However, the reaction mixture contains impurities including enzymes, residual NTPs and DNA template, and aberrant mRNAs (dsRNA and truncated RNA)

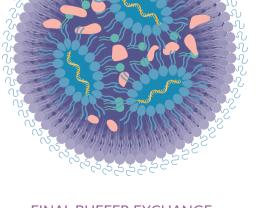
formed during the IVT. **ULTRAFILTRATION & BUFFER EXCHANGE** Reduce volume and remove small impurities

AFFINITY CHROMATOGRAPHY Process related components such as

truncated mRNA, DNA template, buffer components and NTPs **POLISH**

products from the final product **ULTRAFILTRATION & BUFFER EXCHANGE**

Reduce volume and final 0.2 µm filtration


Reduce dsRNA and uncapped RNA

PURIFIED mRNA

Formulation, fill and finish

The purified mRNA is encapsulated in a drug delivery vehicle, such as a lipid nanoparticle (LNP) or another lipid or carbohydrate.

FINAL BUFFER EXCHANGE FINAL FORMULATION & FILTRATION

0.2 μm sterile filtration

FILLING Closed methods for aseptic filling of mRNA-based

therapeutics reduce risk of contamination. **Packaging**

The filled packages undergo final stage quality control and are stored in ultra-low temperature (below -80°C)

responses. **Characterization &** critical quality attribute testing:

purified mRNA drug substance

from IVT can reduce

translation efficiency and cause unwanted immune


% 5' capped: UPLC, RP-HPLC and LC/MS % 3' polyA: RP-HPLC mRNA integrity: Gel electrophoresis

% intact & fragment mRNA: capillary gel

Characterization & critical quality attribute testing: mRNA-LNP drug product . LC/MS, HPLC

