

Scalable purification of in vitro transcribed mRNA with POROS Oligo (dT)25 affinity resin

The world leader in serving science

Leading Capabilities for Every Step of Your Workflow

Thermo Fisher

QC and Analytics

Growing Diversity of Biological Molecules in Development

ThermoFisher

New molecule modalities lead to new purification challenges driving a need for additional tools

Synthetic mRNA applications are diverse

ThermoFisher SCIENTIFIC

Vaccines and therapies for:

- Oncology
- Rare and common infectious diseases
- Protein replacement therapies

Obtaining larger quantities of synthetic mRNA for clinical treatment remains a challenge

Thermo Scientific[™] POROS[™] Oligo (dT)25 Affinity Resin

- · Removes process impurities such as enzymes and DNA
- Simplified workflow helps to maximize efficiency, thereby reducing complexity of subsequent polish steps
- Easy to use: Load in NaCl, Elute in water
- Excellent scalability
- Non-animal derived

Polythymidine (poly-dT) 25-mer with proprietary linker

Thermo Fisher

- Simple mRNA capture through AT base pairing
- Large-pore structure of POROS beads deliver superior flow characteristics
- DBC up to 5 mg/mL for 4000 bp mRNA
- >90 % recovery
- Physically robust and reusable:
 - high salt high pH high temperature
- Available in bulk formats: 10, 25, 50, 250 mL, 1, 5, 10 L
- Prepack formats available

Designed for the purification and isolation of mRNA from in vitro transcription manufacturing processes

The Unique Features of the POROS[™] Bead

Poly(styrene-divinylbenzene) Backbone

- · Linear pressure flow curve
- Rigid, linear and scalable performance
- · Easy handling
- Highly robust and chemically stable

Large throughpores

- Reduced mass transfer resistance
- Capacity and resolution well maintained over a wide range of linear velocities
- More efficient purification

50 micron bead size

- Superior resolution
- Improved capacity through novel surface chemistries
- Excellent pressure-flow properties
- Fully scalable

Thermo Scientific[™] POROS[™] Oligo (dT)25 Affinity Resin

Thermo Fisher

Resin technical features

- Based on POROS technology
 - Designed for the purification of biomolecules
- 50µm rigid, porous bead
 - Pore size ~200nm
 - Poly(styrene-co-divinylbenzene) base bead
 - Coated with proprietary functional hydrophilic coating
- Ligand with proprietary linker
 - dT-25 poly-deoxythymidine

Thermo Fisher POROS Oligo (dT)25 for mRNA production POROS Oligo(dT) 25 POROS Oligo(dT) 25 **POROS HIC or IEX** Affinity IP-RP/ Affinity purification **HIC / IEX** polish Removal of process related Removal of dsRNA and uncapped Polishing of final product Ð Ð components such as DNA template, RNA from the final product Buffer exchange/formulation nucleotides, enzymes and buffer Removal of secondary RNA Θ components structures if needed (e.g. hairpin) Removal of product related C components such as mRNA without a polyA tail

mRNA precipitation point determination

Precipitation of mRNA at increasing salt concentrations Salt concentration 0.03 0.03 KCI (M) mRNAs NaCI (M) -1000 nt mRNA ------ 2000 nt mRNA 2000 nt mRNA A600 readings A600 readings 0.02 0.02 - 3000 nt mRNA 3000 nt 1.8 2.0 PPT 0.01 0.01 2000 nt 1.4 2 0.00 0.00 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 1000 nt 1.8 1.8 NaCl concentration, M KCI concentration, M A600 measurement – optical density

mRNA precipitation is dependent on construct size and sequence, type of salt and concentration

Salt Type & Concentration effect on mRNA Binding during screening

Thermo Fisher

SCIENTIFIC

POROS Oligo (dT)25 resin shows efficient elution over a wide range of salt load concentrations

Thermo Fisher SCIENTIFIC

Optimization of salt and pH – Contour plots of static binding capacity

Optimal binding conditions are construct dependent

Dynamic Binding Capacity study -

3000 nt mRNA feed concentration & load residence time

Thermo Fisher

Binding capacity is increased through higher mRNA concentration in the load and residence time

Influence of molecule size – binding capacity and recovery

Thermo Fisher

mRNA molecule size impacts binding capacity but not final recovery

Purification of 2000nt mRNA from IVT mix – 2mg/mL Load

Elution Volume, mL

Thermo Fisher SCIENTIFIC

2000 nt mRNA Separation from IVT Mixture

Thermo Fisher SCIENTIFIC

mRNA IVT mixture load at 4mg/mL

Excellent elution efficiency at different loading concentrations

Thermo Fisher

Recovery and impurity removal

High recovery and purity independent of sample type

POROS Oligo (dT)25 affinity resin reuse

Purification of mRNA (1809nt + polyA 120nt) over multiple cycles from IVT mixture

Thermo Fisher

Recovery is not impacted by resin reuse and cleaning

Partnering with AmpTec to Deliver Increasing Demand

Thermo Fisher SCIENTIFIC

Opportunity

Our plan

- AmpTec, a leading RNA CMO, has increasing demand for large quantities of clinical-grade mRNA
- Needs efficient and scalable solution for large scale manufacturing projects

- Worked with customer to understand challenges with current technologies: reverse phase HPLC won't scale and spin columns are inefficient
- Thermo Fisher offered POROS Oligo (dT)25 affinity resin and is supporting evaluation and platform process development
- Adopting POROS Oligo (dT) into mRNA purification platform, allows customer to take on projects such as large scale COVID-19 vaccine manufacture

Results

 "This promising technology will allow us to meet the increasing demands of mRNAs from our customers." - Peter Scheinert, CEO AmpTec

Purification of 2000nt mRNA from IVT mix – 2mg/mL Load

.

Elution Volume, mL

Thermo Fisher

ThermoFisher SCIENTIFIC

Efficient removal of impurities compared to the spin column method

Purification with POROS Oligo (dT)25 leads to a significant reduction of impurities

Cleaning and stability of the Oligo (dT)25 affinity resin

110% 100% onic capacity, normalized % 90% • 0.1N HCI 80% • 0.1N NaOH • 0.5N NaOH 70% 60% 50% 8 0 16 24 32 40 48 56 Incubation time, hrs

The Oligo (dT)25 resin demonstrates good stability over a wide range of pH conditions (1-13) and can withstand 0.5N NaOH, allowing for stringent cleaning and sanitization

Thermo Fisher

Accelerated stability of the Oligo (dT)25 affinity resin

10.0 9.0 8.0 lonic capacities, µmol/mL • 7.0 • 6.0 ۲ ٠ ۲ 90% 5.0 4.0 3.0 2.0 1.0 0.0 12 16 20 24 28 0 4 8 Storage at 60°C, Days

Test storage condition Predicted storage conditions		
Days at 60∘C	Months at 25ºC	Months at 5ºC
5	6	66
11	12	138
16	18	204
21	24	276
26	30	342

Accelerated stability study demonstrates excellent predicted long-term stability of the resin

Thermo Fisher s c | e N T | F | c

Thank you

Thermo Fisher

mRNA Analytics: Product Characterization and Quality Monitoring

Thermo Fisher SCIENTIFIC

For Research Use Only. Not for use in diagnostic procedures.

Thermo Fisher

Finding the right binding buffer – Contour plots of static binding capacity

Optimal binding conditions are construct dependent