resDNASEQ ${ }^{\text {TM }}$ HEK293 and E1A Fragment Length Quantitative Assays: Comprehensive Solution for GMP Lot Release in Gene Therapy and Vaccine Manufacturing

Viki Mahen ${ }^{1}$, Yifang Lee ${ }^{1}$, Kum Siau Ling ${ }^{1}$, Fabian Tang ${ }^{1}$, Ng Li Theng ${ }^{1}$, Cuilan Chen ${ }^{1}$, Johnie Young², Jui-Yu Liao², Mihir Rajhansa² Michael Mateling ${ }^{2}$, Chia Sing Yi¹, Howard Saw ${ }^{1}$, ${ }^{1}$

ABSTRACT

Purpose Biopharmaceutical products must limit host cell esidual DNA contaminants to prevent genotoxicity and immunotoxicity risks to patients. Existing regulatory guidelines for residual host cell DNA require $\leq 10 \mathrm{ng}$ per dose with a DNA size of 200bp or lower. In viral vector production the amount, size, and oncogenic sequences of encapsidated Disher of adititional concern. To address this need Thermo Fisher Scientific has developed two complementary assays Biosystems ${ }^{\text {TM }}$ resDNASEQTM Quantitative HEK293 DNA kit puantifies total residual host cell DNA and the The Applied Biosystems ${ }^{\text {TM }}$ resDNASEQ™ E1A DNA Fragment Length Kit performs sizing analysis of short (86bp), medium (200bp) and long (476 bp) fragments targeting the E1A oncogene.

Method To demonstrate performance, DNA in both kits were diluted to create a 5 -point linear standard curve for interpolation of unknown sample concentrations. DNA spiked in complex matrix formulations, representing various stages in the bioproduction workflow, were extracted manually and using the Kingrisheridual DNA Sample Preparation kit. Real-time PCR was performed on both QuantStudio ${ }^{\text {TM }} 5$ and 7500 Fast real-time PCR instrument and data analyzed on AccuSEQTM analysis software to verify performance pecifications such as sensitivity, specificity, accuracy linearity and robustness.

Results The limit of quantitation (LOQ) for both HEK293 and E1A Fragment assays were 0.3 pg and 30 copies respectively. Alr standard curve points conformed to a linear The assays showed high accuracy in the various bioprocessing sample matrices and high specificity when spiked with cross-reactants, including other cell line DNA viral and bacterial gDNA. Spiked sample recoveries measured on both the QuantStudio 5 and 7500 Fast were

MATERIALS AND METHODS

Performance was validated across multiple conditions:

2 Manufactured Lot

Days $\times 3$ Operators $\times 2$ instruments $\times 2$ Sites Applied Biosystems ${ }^{\text {TM }} 7500$ Fast Real-Time PCR Stument + AccuSEQ 2.T Software, Applied strument
AccuSEQ ${ }^{\text {TM }} 3.0$ Software
All measurements were run in triplicate

RESULTS
resDNASEQ HEK293 and E1A Fragment Standard Curve In order to perform accurate quantitation of residual genomi HEK293 DNA and EIA DNA for gene therapy and vaccine standard provided in the kit Both standard curves are generated using serial dilutions to generate 5 standards which were run in triplicate using qPCR (Quantstudio 5 and Fast 7500) and is shown in Figure 1. The Ct CV\% were also calculated for each standard level and met the criteria (each less than 10% CV\%)
 resDNASEQTM Quantitative HEK293 DNA Kit. Standards were
diluted to $3,000 \mathrm{pg}, 300 \mathrm{pg}, 30 \mathrm{pg}, 3 \mathrm{pg}$, and 0.3 pg per PCR well. (Right) Representative performance of the resDNASEQ (Right) Representative performance of the resDNASEQ
Quantitative HEK293 DNA Kit. Standards for short, medium and long assays
per PCR well.

Standard curve fit parameters were calculated for resDNASEQ HEK293 and the slope of $-3.28, R^{2}=0.997$ and Efficiency of 101.7 and fell within acceptable limits of $\mathrm{R}^{2}>0.99$ and Efficiency within $90-110 \%$.
Standard curve fit parameters were calculated for E1A fragments assays - short / medium / long and the slopes were $-3.34 /-3.36 /-3.44, R 2=0.997$ and Efficiencies were $99 \% / 98.6 \% / 95.6 \%$. All results fall within acceptable limits of $\mathrm{R}^{2}>0.99$ and Efficiency within $90-110 \%$. Reproducibility was investigated by running multiple standard curves in two and 5 and show that results at both sites fall into acce 4 ranges.

Figure 4. Summary of Quantstudio
resDNASEQ HEK293 Assay kits

Figure 5. Sun mary or Quanstucio

Effect of Inhibitors: A robust assay must give consistent and accurate results in the presence of inhibitors in sample The results of our assay where three different inhibitors
typically found in the manufacturing process (benzonase Tween and LV-MAX) were used as shown in Figure 5. The inhibitors had no effect on PCR detection and sensitivity. The results from Internal Positive Control (FAM channel) in presence of inhibitor E, F and G presented the same Ct detection. This indicates that the assays are robust enough to quantitate samples present complex manufacturing matrices.
resDNASEQ HEK293

Figure 6. Ct values of Inhibitors E, F and G in both the
and HEK293/E1A FAM channels from Quantstudio instrument

Assay Specificity: The resDNAseq HEK293 and E1A Fragment Assay kits demonstrated high specificity (Figures sources (3ng non-specific DNA spikes).

resDNASEQ E1A Fragment Assays

CONCLUSIONS

Robust, highly sensitive and reliable real time PCR assay for quantitation of residual DNA impurities in HEK293 cell Ines were developed to support gene therapeutics. The different fragment sizes of E1A prosene to help enab manufacturers of gene therapies and vaccines meet regulatory requirements. Both assays met the following key metrics:
(LOQ) was consistently achieved 30 copies. The limit of detection (LOD) was 10 copies. Robustness was demonstrated by R-squared (R2) values greater than 0.99 and PCR efficiency of $100 \pm 10 \%$ fro standard curves based on PCR performed using multiple reagent lots, multiple days, and multiple operator Spike recoveries observed in common gene therapy dorkflow matrices were within $70-130 \%$, which is tigh han the USP <500> guidance (50-150\%) presence of inhibitors and showed high specificity in the pecificity in the presence of off-target DNA.

ACKNOWLEDGEMENTS

The authors would like to thank Mike Cassel, Ele Scarpati Pat Shackleford, Johnie Young, Josephine Keating, Brad Srinath Kashi Ranganath, and Jonas Buege for their assistance and guidance on both projects.

TRADEMARKS/LICENSING

For Research Use Only. Not for use in diagnostic procedures. 2021 Thermo Fisher Scientific Inc. All rights reserved. All its subsidiaries unless otherwise specified.

ThermoFisher SCIENTIFIC

