过渡元素XPS分析II--数据处理

XPS analysis for transition-metal elements (II): Data processing

吴正龙 北京师范大学分析测试中心

XPS分析方法通则及XPS 标准术语的介绍 Introduction to General rules for XPS analysis method, and XPS Vocabulary

- 本底扣除
 - Shirley
 - Tougaard (Seah REELS)

- 过渡元素XPS中光电子激发
 - 。自旋轨道分离
 - 。CK跃迁
 - 。多电子相互作用
 - 。终态效应
 - 第3周期过渡元素1s²2s²2p⁶3s²3p⁶3dⁿ4s²
 - 。带间跃迁、带内跃迁

- 过渡元素XPS谱特征
 - 。不对称、拖尾
 - 。多峰
 - 。多价态*
 - Ti2+, 3+, 4+; Fe2+,3+; Cr2+,3+,6+; Mn2+, 3+, 4+;
 V3+,4+,5+; Co2+,3+; Ni2+,3+
 - Cul+,2+; Znl+,2+
 - Sb2+,5+; Sn2+,4+
- 如何谱峰指认和价态分析、定量分析?

探究谱峰结构及分析方法、建立谱 图库应用于指认价态、定量分析 • 过渡元素化学性质活泼;

- 。多价态,与不同元素化合-谱峰结构变化
- 化学环境、物理环境影响谱峰
- XPS多峰结构以及终态、Shake-up等

背景扣除: 分峰前先扣除背景

•对于HAS的CAE,响应函数(IERF)校正

 $j(E) = j_0(E) * E^{0.7}$ $j_0(E)$ 测量谱; j(E) 校正谱

IERF~E^α,这里α=0~-1,随E增加α负增加,即 KE高能IERF=E⁻¹; 约KE=500eV IERF=E^{-0.5}; 在Avantage中取IERF=E^{-0.6};

E_{min}(最低)处为J(E)零,常数扣除背景

背景扣除: 分峰前先扣除背景

Shirley Background

 $F_{k+1}(E) = j(E) - j(E_{\min}) \frac{\int_{E}^{E \max} F_k(T) dT}{\int_{E \min}^{E \max} F_k(T) dT}$

优点:计算方便,.....; 缺点:物理意义不明确。

k 为迭代次数,取 F₁(E)=j(E)=j₀(E), F_{k+1}(E_{min})=0, F_{k+1}(E_{max})=j(E_{max}),确定 j(E_{min})实际使用中取3点或多点平均值; 背景与高KE侧的峰面积正比; 为避免出现负值采用smart方法

背景扣除: 分峰前先扣除背景

优点:物理意义明确;

- 缺点:计算困难,实验数据量大,.....
- Tougaard Background

$$F(E) = j(E) - \lambda_i \int_{E}^{+\infty} j(E') K(E' - E) dE'$$

$$\lambda_i K(T) = \frac{BT^2}{(C + T^2)^2} \qquad \text{if} \qquad \lambda_i K(T) = \frac{BT^2}{(C - T^2)^2 + DT^2}$$

损失能量T的非弹性散射微分截面K(T)

为避免Plasmon和Shake-up特征峰采用3参数(BCD)的微分截面函数

推荐尝试使用 1) Tougaard 普适参数, B=3250 eV², C=1643 eV² 2) Seah-Tougaard 普适参数, B=1430 eV², C=756 eV²

- Voigt (GL) • GLP $GLP = \exp[-\ln 2*(1-m)\frac{(E-E_0)^2}{\beta^2}]/[1+\frac{m(E-E_0)^2}{\beta^2}]$ • GLS $GLS = (1-m)\exp[-\ln 2*\frac{(E-E_0)^2}{\beta^2}] + m/[1+\frac{m(E-E_0)^2}{\beta^2}]$ $\beta = 0.5*FWHM$ • 尾部函数T $T = TM*CT + (1-TM)\exp(-D*ET)$ $D = (E_0 - E)/\beta, \quad \beta = 0.5F(WHM), \quad E < E_0$
- 谱峰的表示
- $Y = H * [GL + (1 GL) * T] \quad (E < E_0)$ $Y = H * GL \quad (E >= E_0)$

背景扣除实例

AI2O3/AI的 REELS Sc

Scan 979eV

*样品性质差异,背景存在差异;

**思路:*利用REELS找出Tougaard中的 B,C,D等参数,用于XPS扣除背景; 纯Al₂O₃的XPS (Al2p、Al2s)

*需要完善,谱中出现*Al₂O₃和Al 的等离激元峰;需要更复杂的计算, 剥离等离激元峰

影响谱峰结构

- 原子外部(Extrinsic): Plasmon,多电子, 带间跃迁,.....
- 原子内部(Intrinsic): Shake-up satelliate,
 终态效应峰,.....
 - 。对于低自旋态化合物元素,终态效应不明显
 - •如Ti,V,Cu,Zn
 - 。对于高自旋态化合物元素,终态效应明显
 - •如Cr, Mn, Fe, Co, Ni

终态2p⁵3dⁿ (n=1~10)

自由离子模型的理论计算XPS谱,希望能用于过渡元素XPS谱峰拟合。 [PRB 12(1975)15-19]

结论:同一元素不同价态(外层未成对电子数不同),其XPS峰形存在差异。

XPS计算谱与实际测试谱

分峰处理方法:参考物质XPS谱拟合得到峰形参数(拟合参数)。 比较NNLSF。信号电子在不同材料中的散射(背景)、损失等不同

例如, Cu metal Cu2p Cu4-2 Cu2p Cu4-2 2.00E+06 Cu2p3 A 2.50E+05 ŝ 1.50E+06 × (Residuals 2.00E+05 Counts / s 1.00E+06 Cu2p1 A Counts / s 1.50E+05 参数 5.00E+05 **rFWH** I* FWHM dEb r L/G M eV 0.00E+004 eV 970 960 950 940 930 930 19.81 0.31 45% 0.532 1.69 Binding Energy (eV) 001100100 1VIIA (70) 1010 TOIGHT (70 11.1

Ti2p分析:TiO2

- TiO2 XPS谱
- 1: Ar+刻蚀诱导还原态Ti *+;
- 2: 4:1>2:1, 2p1展宽, CK跃迁;
- 3: plasmon;

过渡金属元素拟合方法探索

 · 过渡金属元素XPS谱峰结构复杂,尝试先 分析参考样品,获得谱峰峰形参数(拟合 参数),再用于实测样品的谱峰分析拟 合,……

_

•总结有关Ti的2p峰参数

	峰位eV	背景	峰形	2p峰高比	2p峰宽比	2p ∆Eb eV
TiO2	458.7	Shirle y	对称	0.3	1.75	5.7
TiOx	457.0	Shirle y	对称	0.4	1	5.7
TiC	453.7	Shirle y	非对称 (0.02/2.53/0.0 34)	0.31	1.6	5.8
TiN	454.9	Shirle y	非对称 (0/10.7/.046 5) Sat 2.6	0.4	1.68	6
Ti	454.1		非对称 (40.5/0/.035 8)	0.4	1.3	6.1

出现纯Ti峰Ti2p_{3/2} 543.1eV同时背景提升, 是纯Ti本身出现背景提升还是覆盖层出现的提升?对 照Ti-onSi,发现是由于本身背景提升,源于金属Ti 的多电子损失或非弹性散射。如何处理该背景,尤其 在TiO2+Ti(混相)中处理数据。

表明纯Ti被覆盖在TiO2薄膜下。出射信号 光电子Ti2p3受到TiO₂薄膜散射。通常采用两种 技术处理此类问题。

- 1) 在Ti2p峰低动能侧增加拖尾;
- 2) (非均匀物质)覆盖层薄膜/基底背景提升;

Shirley扣背景,纯钛背景不对称, Ti2p LS拟合

TiC/TiCx 中Ti与C的比值?

测量DLC薄膜中TiC含量

认识TiC/TiO2/TiN的Ti2p谱峰

TiO2表面分峰分析

TiOC化合物体系:TiC/TiO2

Binding Energy (eV)

	峰位eV	背景	峰形	2p峰高比	2p峰宽比	2p ∆Eb eV	
TiO2	458.7	Shirle y	对称	0.3	1.75	5.7	T:C
TiOx	457.0	Shirle y	对称	0.4	1	5.7	TIC.
TiC	453.7	Shirle y	非对称 (0.02/2.53/0. 034)	0.31	1.6	5.8	TiO2
							TiOx

XPS分析TiCO

参考TiO2、TiOx及TiC分峰参数分析TiCO

不同化学态有不同的谱峰参数

对于化合物或多相谱峰采用不同的谱峰参数拟合

	峰位eV	背景	峰形	2p峰高比	2p峰宽比	2p ∆Eb eV	
TiO2	458.6	Shirley	对称	0.29	1.8	5.2	
TiOx	456.7	Shirley	对称	0.25 *	*	5.4	
TiC	454.7	Shirley	非对称 (4.43/0.9/0.04) #	0.5	T	5.9	

(尾参数)

#

(考量背景影响?)

Ti2p Scan

	分析7	TiO ₂	JO/DLC 等样品的	复杂化	化合物 到Ti2p	り 薄膜 谱参数
	峰位eV	背景	峰形	2p峰高比	2p峰宽比	2p ∆Eb eV
TiO2	458.7	Shirley	对称	0.3	1.75	5.7
TiOx	457.0	Shirley	对称	0.4	I	5.7
TiC	453.7	Shirley	非对称 (0.02/2.53/0.034)	0.31	1.6	5.8
TiN	454.9	Shirley	非对称(0/10.7/.0465) Sat 2.6	0.4	1.68	6
Ti	454.1	Shirley	非对称(40.5/0/.0358)	0.4	1.3	6.1

TiNCO (140506-Ti-1)

区分TiN和TiC???

TiNCO (140506-Ti-I)

结论: 包覆TiN-TiC/TiO2-DLC 师范大学分析测试中心 电子能谱

TiCO (140416-7)

Ti2p峰对称: extrinsic (plasmon), intrinsic (shake-up 等损失峰) 总结不同价态Ti的Ti2p峰参数 Ti, TiO2, TiOx TiC, TiOC, TiN, TiCN等参数

∆Eb(2p1-2p3) I_ratio(2p1/2p3) W(2p1/2p3)

参考样品Ti/TiO2等XPS谱图及参数积累。

	REF	Fe	FeO	Fe2O3	FeOH3	FeOOH
Fe XPS	Eb eV	706.7	709.4	710.8	711.7	711.8

• Fe 0+ Fe n+(目然氧化)

Fe XPS

• Fe_2^+ , Fe_3^+

• Fe2O3、Fe3O4、FeO等比较

REF	Fe	FeO	Fe2O3	FeOH3	FeOOH
Eb eV	706.7	709.4	710.8	?	711.8

Binding Energy (eV)

Fe-CNTS Fe2p分析

Tougaard

Fe-CNTS Fe2p分析

分析使用过的亚铁氰化铁

用Tougaard和Seah Tougaard扣除背景

Ni2p谱XPS分析

• Ni2p 出现

0

- 多电子激发,终态分裂,CK跃迁等现象,谱
 峰非对称性
- 多价态,不同价态等出现不同的谱峰结构,相
 互叠加、展宽

Cu2p谱峰分析

				ιταιιο	0.0.0	παιιο		1 100001	WIIA (70)	стронон
8										

Cu2p谱峰分析

非线性拟合NLLSF

- 元素在不同的化学态的化合物中,
 - 峰形变化,如改变通过能
 - 。背景变化,

0

• 在NLLSF中无法调节参数

谢谢关注

- 联系方式:
- •北京师范大学分析测试中心 吴正龙
- wuzl@bnu.edu.cn