Raman Imaging: A Critical Tool for Realizing Graphene and Graphene Composite Materials

Dr. Mark Wall Raman Product Specialist Thermo Fisher Scientific

The world leader in serving science

Overview

- Fundamentals of Raman spectroscopy
- Modern instrumentation
- The Raman Characterization of graphene
 - Point measurements
 - Mapping and Imaging
- Raman imaging examples
 - Partial growth graphene
 - Graphene as a protective coating material
- Confocal Raman imaging of graphene
 - Cross sectional and Z-stack measurements

Raman spectroscopy

Modern Raman Instrumentation

- Instruments of the past
 - Large
 - Complex
 - Difficult to maintain
 - Required dedicated operator

- Modern instrumentation
 - Integrated and compact
 - Easy to use
 - Very low maintenance
 - Automated alignment
 - Automated calibration
 - True walk up instruments

Thermo Scientific Family of Dispersive Raman Instruments

Raman Spectroscopy and Graphene Characterization

- Techniques used for characterization of graphene
 - SEM/TEM
 - Nanometer scale morphological information
 - Sample preparation needed
 - Detailed elemental information lacking in detailed molecular information
 - Requires vacuum
 - Often destructive measurement
 - XPS
 - Nanometer scale surface information
 - Oxidation state and fuctinalization information
 - Requires vacuum
 - AFM
 - Nanometer scale morphological information
 - Topological, mechanical
 - Lacking in molecular or chemical information

Raman Spectroscopy and Graphene Characterization

- Raman spectroscopy fills the chemical/ molecular "hole"
 - Provides specific and direct chemical information
 - Detailed structural information
 - Sensitive to the local environment
 - Stress and strain
 - No Sample preparation
 - Non destructive
 - No vacuum required
 - Rapid collection times
- Raman microscopy benefits
 - Surface and sub-surface characterization
 - Mapping/imaging capabilites
 - High spatial resolution
 - Sub micron x and y
 - Micron scale in the Z

Graphene: Raman Spectral Features

Thermo Fisher SCIENTIFIC

Raman Spectrum of Graphene – Principle Bands

G band

- Peak position and relative intensity is sensitive to
 - Layer thickness
 - Doping
 - Strain
- D band
 - Peak intensity is sensitive to
 - Presence of defects or disorder
 - Sampling in proximity of an edge
 - Chemical modification
 - Increase of sp3 hybridized C bonding at the expense sp2 hybridzed C bonding
- 2D band
 - Peak position, band shape, and intensity sensitive
 - Layer thickness and interlayer orientation
 - Strain

Raman Spectroscopy – Graphene Layer Thickness

The Effect of Strain on Graphene

Graphene Characterization – Raman Mapping

Graphene Characterization – Raman Mapping

Discriminant analysis results based upon the 2D band

The DXRxi Raman Imaging Microscope

A total imaging system: hardware and software integration combines **powerful performance** with **image-centric** analysis and **ease of use**

A completely **new approach** to Raman imaging!

Raman Imaging – A New Tool for Rapid Characterization

Emphasis on microscopy, powered by spectroscopy keeps the answer in focus

Intelligent Workflow with Excellent Flexibility

2 Confidently optimize settings with intuitive controls

Quickly prioritize multiple regions of interest and run

Information-rich images reveal a multitude of material characteristics

SEM Image of Dendritic Growth Graphene

- SEM illustrates the morphological characteristics that result from particular CVD deposition conditions
- Other techniques are required to obtain deeper insight

Rapid Raman Imaging of Partial Growth Graphene

- Provides vital information to understand growth dynamics
 - Allows determination of number of layers present
 - Provides information about the density of defects during growth
 - Information can be used to understand critical synthesis parameters and mechanisms that govern nucleation and growth of graphene
- Information from Raman can be used to optimize synthesis graphene
 - Minimize defect densities
 - Drive growth towards single crystal graphene
- Rapid imaging allows for bigger areas to be analyzed far faster than ever

Analysis of Graphene, 532nm laser

Ratio of the 2D to G band of graphene:

MCR of graphene:

50 x 50 μm surface area **10,000 spectra!!!** Acquisition parameters: 100 Hz (10 ms/spectrum) **~16.7 minute collect time!!** 175 x 175 μm surface area **122,000 spectra!!!** 0.5 μm pixel size Acquisition parameters: 100 Hz, 10 scans **~3.4 hour collect time!!**

*Note: This graphene was initially grown on copper and then transferred to a silica substrate because the copper is a significant source of interference

Analysis of Graphene on a Copper Substrate

Graphene grown on copper and analyzed on the copper with the 455nm laser

$$I_{scatter} \propto \frac{1}{\lambda_{ex}^4}$$

455nm laser 150 x 150 μ m surface area

90,000 spectra!!!

2.0 µm pixel size Acquisition parameters: 100 Hz (10 ms/spectrum), 4 scans

Copper Substrate Oxidized Copper

Single-layer graphene

Graphene as a Protective Thin film

Chemical images based on Intensity of 642cm⁻¹ band

Chemical images based on Intensity of 1370 cm⁻¹ band

Overlay Graphene on Cu

Thermo Fisher SCIENTIFIC

DXRxi Confocal Microscope

- DXRxi is a fully confocal microscope
 - Provides for higher spatial resolution
 - Achieves <1 µm measured x-y resolution
 - Provides for depth profiling of optically clear samples
 - Achieves 2 µm depth resolution
 - Provides for increased rejection of fluorescence from substrate

DXRxi Imaging -Sampling

- Raman/Chemical Images Image Planes
 - XY Image plane
 - Surface image most common image
 - Subsurface if the z position is below the surface

- XZ Image plane
 - Confocal
 - Surface and subsurface
 - sample needs to be transparent
 - Also referred to as Cross-section
- Image stack of XY Image planes
 - Confocal sample needs to be transparent
 - Z axis image stack
 - Volume rendering capable

Confocal Raman Imaging Optical Cross Sectioning

Sub-surface xy Raman Image of Multilayer Graphene Flakes in Polystyrene

Cross- Section Analysis – Graphene on PET

Sub-surface xz Raman Image of Single Layer Graphene on PET

Multilayer Graphene Dispersed in Polystyrene Image Results

- Graphene was dispersed in Polystyrene at 1% w/w
- Confocal Raman images collected on Thermo Scientific DXRxi Raman Imaging Microscope
 - 455 nm excitation 3.7 mW laser power at sample
 - Raman spectra collected at a rate of 35 spectra/sec with 35 co-adds
 - 2 μ M x 2 μ M image pixel size
 - 11 xy chemical image planes (slices) were collected over an area of 82 μ M x 86 μ M 20,000 spectra for the image stack

Graphene Dispersed in Polystyrene Z – Stack Slices

SCIENTIFIC

Raman Imaging – Confocal Volume Rendering

- Raman Spectroscopy was presented demonstrating the usefulness of Raman Spectroscopy for characterizing Graphene
- Modern instrumentation was discussed
- Raman imaging examples were presented
 - Partial growth graphene
 - Graphene as a protective coating material
- Confocal Raman imaging of graphene
 - Cross sectional and Z-stack measurements

Questions?

Thank You for our time and attention!

mark.wall@thermofisher.com

