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Significance
In-line and real-time measurement of accurate protein 

(monoclonal antibody, or mAb) concentration has been 

demonstrated over a wide dynamic range (0-135 g/L)  

using the Raman process analyzer for the ultrafiltration/

diafiltration (UF/DF) as shown in Figure 1.

The methodology described in the paper offers actionable 

results for downstream processing, providing valuable 

insights for monitoring and controlling protein concentration. 

Additionally, we have demonstrated that the Raman models 

developed for measuring mAb concentration are transferrable 

to a similar class of monoclonal antibodies.

Introduction
Therapeutic proteins (e.g., monoclonal antibodies, insulin, 

Fc-fusion protein, antibody-drugs conjugates, hormones) are 

used to treat a variety of conditions and diseases such as 

cancer, immunologic diseases, communicable diseases like 

COVID-19, and many others.¹ The efficacy and functionality of 

a therapeutic protein are dependent on dosage and its physical 

state and structure. Abrupt changes in the environment of 

the protein, such as shifts in pH, temperature, shear force, or 

chemical modification, can induce conformational changes 

within the protein. The structural changes may lead to protein 

denaturation, aggregation, and even degradation—all of which 

can lower the efficacy of the therapeutic protein or trigger 

negative health consequences for the patient. Thus, ensuring 

the quantity and quality of therapeutic proteins throughout the 

manufacturing process—from production, through the fill and 

finish stage, and during storage— is of paramount importance.² 

Figure 1. Diagram showing integration of process Raman in a 
UF/DF process using a flowcell probe for in-line estimation of 
accurate protein concentration. 
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Therapeutic proteins like monoclonal antibodies are produced 

in a bioreactor where cells are maintained at optimum 

conditions by controlling nutrition and physical factors like 

pH, temperature, and dissolved oxygen. The bioreactor’s 

controlled environment leads to improved monoclonal antibody 

production. Following the upstream process, operations like 

centrifugation, filtration, chromatography, viral inactivation, 

concentration, buffer exchange, formulation, and fill and 

finish are performed to purify the monoclonal antibodies and 

formulate them into drug products. These operations are 

collectively categorized as downstream processes (Figure 2). 

In this study, we placed a Thermo Scientific™ MarqMetrix™ All-

In-One Process Raman Analyzer in a UF/DF run, as described 

in Figure 1, for use as an in-line process analytical technology 

(PAT) solution for measuring mAb concentration. In-line PAT 

enables real-time monitoring and control of critical process 

parameters that are key to reducing batch-to-batch process 

variability and ensuring uniformity of products. A well-controlled 

process also implies high efficiency, product quality, and 

minimized manufacturing costs.³ Currently, ultraviolet- visible 

(UV-Vis) spectrometry is the standard technology for in-line 

quantification of protein concentration during downstream 

purification.⁴ However, in recent years, process Raman has 

gained popularity as a complementary technology for in-line 

monitoring of protein concentration with its additional benefits 

of being able to measure excipient concentrations, buffer 

components, and critical quality attributes (CQAs) of products.⁵ 

Here, we demonstrate the use of process Raman as a viable 

PAT solution for accurate and real-time quantification of mAb 

concentration during downstream processing. In addition,  

we also show the model’s transferability to a different 

monoclonal antibody. 

Experimental design and data analysis
Calibration model development
Partial least square (PLS) calibration models for mAb 

quantification were developed using the calibration samples of 

product A ranging in concentration from 0 to 135 mg/mL. The 

samples were passed through the FlowCell probe integrated 

with process Raman at a 100 mL/min flow rate. The Raman 

spectra were acquired using a 785 nm laser with the following 

acquisition parameters: laser power 450 mW; integration time 

3000 ms; average 3 (i.e., a single spectrum per 18 s); and ten 

replicates per concentration. 

PLS models were developed for mAb quantification using two 

spectral regions. The “Amide I PLS model” utilized the spectral 

region of approximately 1550 to 1850 cm-1, while the “Extended 

Region PLS model” utilized a broader spectral region from 

approximately 850 to 1850 cm-1. The terminal region of the 

spectra (~ 3098 to 3230 cm-1) that corresponds to water band 

vibrations was also included in the normalization model. The 

models were built after following the data preprocessing steps: 

1) normalization to the water band in every spectrum using 

infinity norm; 2) SavGol filter 1st derivative (smoothing window 

13 and polynomial order 2); and 3) mean centering. Both 

models were internally validated using a leave-one-out  

cross-validation (LOOCV) strategy (contiguous block of 10). 

Initially, both models were built using the latent variables 

ranging from 1 through 20. The root mean square error of 

calibration (RMSEC), and the root mean square error of cross-

validation (RMSECV) was calculated for each model. Finally, 

the optimum latent variable PLS model was selected using 

the following criteria: 1) adding more latent variables did not 

significantly improve the RMSECV; and 2) the values of RMSEC 

and RMSECV were similar. To evaluate model specificity, 

the variable importance in the projection (VIP) scores was 

calculated for the above two models. All chemometric works 

were performed using Solo 9.3 (2024) Eigenvector Research, 

Inc, Manson, WA USA 98831 software.

Figure 2. Upstream and downstream workflow for production of monoclonal antibodies.
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Validation of model performance 
The Raman spectra for the test samples were collected for 

two different monoclonal antibodies (products A and B) using 

the procedure described for the training data. The formulation 

buffers for products A and B were different during the 

diafiltration steps. These acquired spectra were fed into the 

models to get the real-time prediction of protein concentration. 

The predicted concentrations were then compared with the 

reference in-line and offline UV-Vis values to estimate the 

prediction error. 

Results 
The correlation plot between measured and predicted (during 

cross-validation) protein concentrations for the Amide I PLS 

models is shown in Figure 3A. The Amide I PLS model was 

developed using four latent variables as the RMSECV did not 

improve by adding more latent variables (data not shown). The 

RMSEC and RMSECV for the Amide I PLS model were 0.526 

mg/mL and 0.607 mg/mL respectively. The ratio of RMSEC and 

RMSECV being close to 1 suggests that the model is not overly 

fitted. Similarly, the R² of CV is close to 1, and negligible CV 

bias indicates that the model fits well with the training data. The 

model statistics are summarized in Table 1. 

Figure 3. The correlation plot for measured and cross validation predicted protein concentration for mAb using Amide I and Extended 
Region PLS model.

Table 1.

PLS Model Latent 
Variables

RMSEC  
(mg/mL)

RMSECV 
(mg/mL) CV Bias R² CV

Amide I PLS model 4 0.526 0.607 -0.036 ~1

Extended Region PLS model 4 0.237 0.319 0.014 ~1
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4 Latent Variables 
RMSEC = 0.52639 
RMSECV = 0.60764 
Calibration Bias = 0 
CV Bias = -0.03626 
R² (Cal, CV) = 1.000, 1.000

4 Latent Variables 
RMSEC = 0.2379 
RMSECV = 0.31917 
Calibration Bias = -3.5527e-15 
CV Bias = -0.014102 
R² (Cal, CV) = 1.000, 1.000
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The Amide I model is primarily based on the Raman signature 

of the carbonyl group (–C=O) of the peptide bond (–CO–NH–) 

of mAb. The carbonyl group on different secondary structures 

has different Raman shifts ranging from 1600 to 1750 cm-1. The 

mAb secondary structure is primarily a β-sheet structure. The 

carbonyl in the β-sheet secondary structure has a Raman peak 

at ~ 1670 cm-1. Thus, it can be hypothesized that the Raman 

shift at ~1670 cm-1 should influence the Amide I PLS model. 

The VIP scores were calculated to assess the influence of each 

Raman shift on the model. The Raman shifts with VIP scores 

over one are considered significant for the model. Figure 4A 

shows the VIP scores plot for the Amide I PLS model. The red 

dotted line represents the threshold of a VIP score equal to 1. 

The region from 1640 to 1700 cm-1 have VIP scores of more 

than one and are influential to the model. The region around 

1670 cm-1 has the highest VIP score in the Amide I PLS model. 

This indicates the carbonyl Raman signature in the β-sheet 

secondary structure highly dominates the Amide I PLS model. 

In other words, the VIP scores plot for the Amide I PLS model 

indicates that the model has high specificity for mAb.

Based on the published work, the Amide I region of mAb is 

unique. It has a distinct Raman signature compared to other 

molecules (excipients and buffers) commonly used in the 

downstream processes. No spectral interference in the Amide I 

region suggests that the Amide I PLS model is across different 

matrixes. In addition, most of the mAb have similar mass (a 

similar number of carbonyl residues) and secondary structure. 

Thus, the Amide I PLS model is transferable across multiple 

mAb within the same classes. This was the basis of our intent 

to develop the Amide I PLS model. 

The correlation plot for the four latent variables of the Extended 

Region PLS model is shown in Figure 3, and the model 

statistics are summarized in Table 1. Like the Amide I PLS 

model, the Extended Region PLS model’s excellent statistics 

suggest that it adequately captures the spectral information 

and correlates it with the measured concentration. The VIP 

scores plot for the Extended Region PLS model is shown in 

Figure 4B. Besides the Amide I region, the Raman shift that 

corresponds to the CH deformation (~1450 cm-1), the breading 

mode of the phenylalanine ring (~1005 cm-1), and the tyrosine 

vibration mode (~850 cm-1) are influential in this model. Thus, 

the VIP scores plot for the Extended Region PLS model 

indicates the specificity of the model for mAb.

The RMSEC and RMSECV for the Amide I PLS model are 

higher than the Extended Region PLS model, as shown 

in Table 1, which suggests that the former model is less 

accurate than the latter. The Extended Region PLS model 

leverages additional variables (Raman shifts) in explaining the 

information of the training dataset. Although the Extended 

Region PLS model provides more accuracy, in some cases, the 

transferability of this model across different matrices may result 

in higher prediction error due to spectral overlap. Thus, both 

models have pros and cons, and depending on the need, one 

model might be a better choice.

Figure 4. The VIP scores plot for Amide I PLS model (plot A) and Extended Region PLS model (plot B).
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Performance of models on the UF/DF run using 
product A (mAb)

Transferability of models on product B (mAb)  
UF/DF run
The Amide I and Extended Region PLS models were developed 

using the Product A data set. A UF/DF run was carried out with 

different protein (product B) in a different formulation matrix 

to validate the model performance with other monoclonal 

antibodies. Figure 6A shows the real-time monitoring and 

prediction of Product B concentration during the UF/DF 

process using Amide I and Extended Region PLS models. The 

prediction from the Amide I model (blue trace) and Extended 

Region Model (orange trace) excellently overlay each other. To 

the right in Figure 6B, the absolute prediction error between 

the predicted (Raman) and reference (offline UV-Vis) is shown 

as a function of protein concentration. The blue and orange 

bars represent the prediction errors from the Amide I PLS 

and Extended Region PLS models, respectively. The overall 

prediction errors were below 3% across the concentration 

range tested.

The real-time prediction of protein concentration during the 

process of UF/DF using data from in-line UV-Vis (grey), Amide 

I PLS model (blue trace), and Extended Region PLS model 

(orange) is demonstrated in Figure 5. As shown in the figure, all 

three predictions overlayed each other, demonstrating excellent 

agreement. Minute data discrepancies between in-line UV-Vis 

and Raman were observed. The Raman data was acquired 

every 18 sec, while the in-line UV-Vis data was acquired 

every 12 sec. Since the UF/DF process is highly dynamic, 

the difference in the acquisition times for the in-line UV-Vis 

and Raman instruments explains the discrepancies. Such 

discrepancies can be easily overcome with proper control of 

the process dynamics or acquisition settings. Finally, when the 

Raman prediction from both models was compared with the 

offline UV-Vis reference values, the absolute prediction errors 

were below 5% throughout the process.

Figure 5. Showing excellent correlation of the real-time 
monitoring of UF/DF of product A.

Figure 6. Data demonstrate excellent model transferability 
between proteins with different formulation matrices. The 
calibration models for predicting protein concentration were 
built with Product A and applied to Product B that has a different 
formulation buffer. The absolute prediction error was < 3 %.
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Conclusions
 9 We demonstrated process Raman to be a rapid, reliable, 

and easy-to-use PAT solution for in-line monitoring of 
protein concentration during downstream processes, with 
an accuracy comparable to the reference values from in-line 
and offline UV-Vis instrumentation. 

 9 In this study, we outlined two strategies for developing 
the chemometric models for the quantification of mAb-
based on specific Raman signatures. Because of the high 
specificity of both models for mAb, we also demonstrated 
their excellent transferability to a different mAb in a UF/DF 
run, regardless of differences in buffer formulations. 

 9 Based on works published in the literature, process Raman 
is a broader PAT solution for downstream applications 
because of the additional benefits it brings regarding 
measurement of buffer components, critical quality 
attributes of proteins (aggregation, secondary structure, 
disulfide region), protein modification (antibody-drugs 
conjugates), formulation components, and more.6–8
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