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Introduction 
Cultivated meat, also known as cell-based or lab-grown meat, represents an 

innovative and emerging field of food technology. In this process, meat products are 

grown from animal cells in a controlled laboratory environment without the need for 

traditional animal farming. This emerging field has gained significant interest due to 

its potential to address various environmental, ethical, and sustainability challenges 

associated with conventional meat production.¹,²

A typical bioprocess of cultivated meat includes cell sourcing, cell culture, cell 

differentiation, and tissue engineering, resulting in meat products (Figure 1) that 

closely resemble traditional animal-based meat in terms of taste, texture, and 

nutritional composition.³ Bioreactors are essential components in the overall process, 

as they provide a controlled environment for cell growth and tissue development. 

Several process parameters, including nutrients, oxygen, pH, temperature, 

antiapoptotic and differentiation factors, waste removal, and scaling up, must be 

carefully controlled within bioreactors to optimize the production of high-quality 

cultivated meat. 

In collaboration with

Figure 1. Schematic of process for cultivated meat production. In this study, a Raman 
process analyzer was used to monitor a bioreactor run.
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Raman spectroscopy is increasingly being used as a process 

analytical technology (PAT) for simultaneous monitoring and 

control of multiple parameters of bioreactors, especially in 

biopharmaceutical development. Established PAT applications 

for Raman include evaluating the components of the cell 

culture, glucose and lactate concentrations, amino acid 

consumption, and titer production.⁴ Of particular interest in  

this study are glucose and lactate.

Proper monitoring of nutrient concentration and measurement 

of secondary metabolites are important. Glucose is the primary 

source of energy and carbon in most of the bioreactor runs. 

However, the aldehydic functional group of glucose is reactive 

toward primary amines of biomolecules, leading to undesirable 

product glycation. Thus, the glucose level in the bioreactor is 

a critical process parameter that needs to be monitored and 

maintained at an optimum to ensure high quality and quantity 

of products.⁵ Recently, we demonstrated the feasibility of 

accurate monitoring, control, and automated glucose feeding 

for the entire CHO cell bioreactor run using process Raman as 

a real-time sensor.⁶ A byproduct of anoxygenic cell metabolism,  

lactate, is often used to indicate cell health in response to 

oxygen availability. Excessive lactate hinders cell viability and 

product yield. 

In this study, we present a proof of concept (PoC) study for 

monitoring glucose and lactate in cultivated meat production 

using a Thermo Scientific™ MarqMetrix™ All-In-One Process 

Raman Analyzer, in collaboration with Ivy Farm Technologies 

within one of their bench-scale processes. Also, we demonstrate 

the transferability of chemometric models for glucose and lactate 

across bioprocesses and different instruments. 

Experimental
Cultivated meat bioreactor runs 
The sourced bovine cells were seeded at a low density of 

1x10⁵ cells/mL to culture for one week in a batch bioreactor at 

approximately 3 g/L glucose. No additional glucose was added 

to the bioreactor. The dissolved oxygen, pH, temperature, and 

agitation speed were controlled by respective sensors integrated 

into the bioreactor runs. A MarqMetrix All-In-One Process 

Raman Analyzer with the immersible probe was also integrated 

into the bioreactor to monitor the progress of the process. 

Each Raman spectrum was acquired using the acquisition 

(ACQ) parameters of power 450 mW, integration time 3000 ms, 

and 20 averages. All data acquisition was performed using  

the Thermo Scientific™ Lykos™ PAT Software with  

built-in cosmic ray removal. The software uses Open Platform 

Communication Unified Architecture (OPC™ UA) that allows 

users to do the following:

• Connect multiple instruments within the workflow  
(machine-to-machine communication).

• Pass chemometric predictions in real-time to an OPC client.

• Streamline results into another software system.

• Use results in an automated feedback loop. 

The samples were pooled during the runs, and the reference 

values were measured offline. The prediction from the model 

and the reference values were used to calculate the root mean 

square error of prediction (RMSEP). 

Chemometric models 
The chemometric partial least square (PLS) models for 

glucose and lactate deployed in this study were previously 

built using the Raman data acquired from various bioreactor 

runs, including monoclonal antibody production, viral 

vector production, and others. The ACQ parameters for the 

training data were the same as mentioned above. After data 

acquisition, five spectra with timestamps close to the reference 

values were further averaged to improve the signal-to-noise 

ratio (SNR) before building the chemometric models. The 

training dataset was preprocessed using normalization to 

water band, Sav-Gol 1st derivative filter (order=2, smoothing 

window=13), and mean centering. The partial least square 

(PLS) models were built with appropriate region selection 

specific for glucose and lactate. The number of latent variables 

for the PLS models was selected using a leave-out-one-run 

cross-validation strategy. Each run was excluded once during 

the cross-validation for these models. The five latent variables 

of the PLS model were selected for glucose and lactate based 

on the objective function of minimizing root mean square error 

of cross-validation. No data from cultivated meat was included 

in the training set. The chemometric models were applied to 

the Raman data collected on the cultivated meat bioreactor 

after preprocessing in the same manner as carried out on 

the training data. Different instruments were used to collect 

the training data and monitor the cultivated meat bioreactor; 

however, no transfer function was applied to mitigate inter-

instrument variance.



Results and Discussion
Initial Data Assessment
Figure 2 shows the representative Raman spectra collected 

from the bioreactor run of the cultivated meat. Using the 

appropriate ACQ, the intensity of all peaks in the entire 

spectrum was kept below 45,000 counts (intensity in Y axis) 

throughout the run to avoid signal saturation. All spectra were 

free of cosmic ray interference as the Lykos PAT software 

was operated by enabling the inbuilt cosmic ray removal 

algorithm. The cell density increases with the progression of 

the bioreactor run, causing baseline shift due to background 

scattering and fluorescence effect. In this study, Sav-Gol filters 

and water band normalization were applied to all spectra to 

remove the baseline and correct for the path length differences 

before building the chemometric models or performing 

prediction on the test samples. 

Figure 3 shows the Sav-Gol 2nd derivative (order = 2; window 

width=13) plot of Raman spectra from the bioreactor run for 

cultivated meat production, emphasizing characteristic Raman 

peaks corresponding to glucose and lactate. All traces are 

color-coded based on the reference analyte concentration, 

shown as the gradient bar in the measured range, with yellow 

being high and blue being low. The inverted peak at 1,125 cm-1 

is mainly ascribed to the stretching of C-O and C-C and 

asymmetric out-of-plane vibration of the C-O-C bond in the 

glucose molecule.⁷ The peak at 855 cm-1 is attributed to the 

C-C symmetric stretching of the C-COO- bond (deprotonated 

form) in the lactate molecule.⁸ The appearance of these 

characteristic peaks assures the presence of glucose and 

lactate in the cultivated meat bioreactor. 

Variable importance in projection (VIP) Analysis of 
PLS calibration models
The calibration PLS models for glucose and lactate were 

built using Raman data collected primarily on the CHO cell 

bioreactors for monoclonal antibody production. Before 

applying the model to the cultivated meat process, variable 

importance in projection (VIP) analysis was performed to 

ensure the specificity of the model for the target analytes; this 

provides a measure of transferability across bioprocesses. 

The VIP score analysis is the statistical approach to estimate 

the importance of each predictor variable (also known as the 

independent variable) in regards to the response variable. In 

this PLS model, the Raman shift is the independent variable 

and the concentration of analytes is the response variable.⁹ 

Not all Raman shifts are of equal importance; variables with 

high VIP scores are vital to the model. For instance, the VIP 

plot for the glucose-specific model will have high VIP scores 

for the Raman shift that corresponds to the vibrational modes 

of glucose molecules. In this aspect, the VIP scores plot is 

also indicative of model specificity, which is essential for its 

transferability across processes. 

Figure 2. Raman spectra of cultivated meat bioreactor run;  
color-coded by days. The baseline increased with the  
days’ progress primarily due to cell density increase and 
background fluorescence.

Figure 3. The Sav-Gol filter 2nd derivative plot of the Raman 
spectra of the bioreactor run for cultivated meat production, 
highlighting the characteristic Raman peaks for (A) glucose  
and (B) lactate as explained in the text.
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Figure 4 shows the VIP score plot for the glucose and lactate 

PLS models deployed in this study. It is noted that although the 

Raman spectra of the bioreactor are highly complex due to the 

presence of multiple analytes, in the PLS models, the spectral 

regions of 1,100–150 cm-1 for glucose and 830–870 cm-1 for 

lactate have high VIP scores, indicating that these regions are 

“important” for the models. As described above, these regions 

contain Raman features specific to glucose and lactate. Thus, 

despite the complex intricacies of bioreactors with multiple 

overlapping Raman signals, the PLS models are highly specific 

to the analytes of interest, making them independent of other 

variables in the processes. In other words, the models are 

potentially transferable to an independent future dataset. 

Predictive Performance of PLS Models
Figure 4 shows the performance of the PLS glucose and lactate 

on the bioreactor run for the cultivated meat. Key performance 

statistics are also summarized in Table 1. 

Figure 4. The variable importance plot (VIP) analysis for the (A) glucose and (B) lactate PLS models. A Raman shift with values greater 
than 1 (above the dotted line) is considered significant for the model.

Table 1. PLS model performance statistics for glucose and lactate.

Glucose Lactate

RMSEC 0.337 g/L 0.181 g/L

RMSECV 0.413 g/L 0.250 g/L

RMSEP 0.239 g/L 0.212 g/L

R² (Pred.) 96.1% 87.4%
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The correlation plot of predicted value vs. reference value is 

shown in Figure 5. The root mean square error of predictions 

(RMSEPs) are 0.24 g/L for the glucose model and 0.21 g/L 

for the lactate model, respectively, demonstrating excellent 

correlation between the predicted and the reference values. 

The prediction R² is 96% for glucose and 87% for lactate, 

indicating that the models account for 96% of any variances 

observed for glucose and 87% of those for lactate. The low 

RMSEP and high prediction R2 demonstrate excellent model 

transferability across different processes and instruments.
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5 Latent Variables 
RMSEC = 0.35653 
RMSECV = 0.41269 
RMSEP = 0.23911 
Prediction Bias = -0.10186 
R² (Cal, CV) = 0.965, 0.951 
R² (Pred) = 0.961

Figure 5. The correlation plot of prediction value vs. measured value for (A) glucose and (B) lactate in the bioreactor run for cultivated 
meat. The grey circles are training samples, and the red diamonds are the test samples.
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RMSEC = 0.18062 
RMSECV = 0.25028 
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Prediction Bias = -0.095829 
R² (Cal, CV) = 0.962, 0.929 
R² (Pred) = 0.874
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Figure 6. Q residual (reduced) vs. Hotelling T² (reduced) plot for (A) glucose and (B) lactate. The grey circles are training samples, and 
the red diamonds are the test samples.

The validity of the PLS model prediction was evaluated by 

analyzing the Q-residual-versus-Hotelling T² plots, as shown 

in Figure 6. Q-residuals account for the residual in the test 

data after projecting into the model space, while Hotelling’s 

T² measures the distance of the data from the center of the 

distribution of calibration data. Low Q-residuals and Hotelling’s 

T² scores mean the test data is within the model space. These 

criteria must be met before applying a model to the test data 

or accepting the predicted result with high confidence. In this 

study, the test samples (from the cultivated meat bioreactor) 

have Q-residual (reduced) and Hotelling T² (reduced) scores 

of ~1 when projected into the model space. This means the 

test samples are within the model space with 95% confidence, 

even though the training and test samples are two different 

datasets. This is only possible if the models are only analyte-

specific and free of other process dependence. Thus, this not 

only provides the validity of prediction from models but also 

substantiates the successful transferability of models.

Conclusions
• Raman spectroscopy can offer real-time and  

simultaneous monitoring of glucose and lactate in  
cultivated meat bioreactors. 

• Successful transferability of chemometric models 
developed for mAb productions to the cultivated meat 
bioreactor was demonstrated. The transferability was  
largely due to the specificity of the model for the analyte  
of interest, as illustrated by the statistical analysis. 

• The model transferability across instruments was also 
demonstrated to reflect low inter-instrument variance.  
A detailed study on inter-instrument model transferability  
is reported in our previous work.¹⁰ 

• The synergic operation of Lykos PAT software with 
transferable models, in conjunction with the stable and 
calibration-free MarqMetrix All-In-One Process Raman 
Analyzer, was shown to be an efficient PAT solution for 
bioprocess development and monitoring. 
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