

Polymer Analysis from Raw Material to Formulation Using the Thermo Scientific

Nicolet iS50 FT-IR Spectrometer

Dr. Michael S. Bradley. Ph.D., M.B.A. Product Manager, FT-IR Products

The world leader in serving science

Cutting Edge Tools Across the Spectrum

ThermoFisher S C I E N T I F I C

The world leader in serving science

We are the leading provider of analytical instruments, equipment, reagents and consumables, software and services for research, analysis, discovery and diagnostics.

The Polymer Laboratory Workflow

SCIENTIFIC

Modes of Analysis with Molecular Spectroscopy

NIR

- Common in industrial applications
- Deeply penetrating light

Mid-IR

- Most common type of molecular spectroscopy
- Useful for most organic compounds

- Far-IR
- Provides more information that mid-IR
- Useful for inorganics and some organics

- Raman
 - Complementary to infrared
 - Provides information when IR isn't suitable

When Does a Material Absorb Infrared Light ? The frequency of the light must be identical to the frequency of the vibration (resonance)

- The dipole of the molecule must change during the vibration
 - Strong Absorbance

No Absorbance

Raman Spectroscopy – The Raman Effect

Thermo Fisher

Raman Compared with Infrared

- Complementary information
 - Functional groups dominant in Infrared spectrum
 - Molecular backbone dominant in Raman spectrum
 - Raman often useful for characterizing morphology
 - Weak IR absorbers often strong Raman emitters and vice versa
 - Aqueous solutions pose fewer challenges with Raman

The Nicolet iS50 FT-IR

Thermo Fisher

Flexibility

Hyphenation

- FT-IR microscope
- iS50 NIR Module
- TGA-IR Module
- iS50 GC-IR module

300 31

Polymer Orientation Studies

- Polymers are often stretched along an axis
 - IR absorption is sensitive to the orientation of the molecules
 - Different spectra are obtained depending on molecular bond orientation

Polymer Orientation Studies

- Stretched Polyethylene film placed in instrument
- Polarizer automatically moved into beam path and rotated during data collection
- Series of spectra show changes in absorption as polarizer is rotated

Polymer Orientation Studies (FT-IR)

- Infrared Spectroscopy
 - Generally encompasses 4000cm⁻¹ to around 600cm⁻¹ (wavelength 2.5 microns to 20 microns)
 - Limited by the detector, lens and window material
- Far Infrared ATR
 - Down to ~150cm⁻¹ (<50 micron wavelength)
 - Diamond ATR crystals and windows allow Far IR

- Polymer additives and pigments are scrutinized for safety
 - Some pigments are banned because they are heavy metals (lead, cadmium)
 - Often these pigments have no mid-IR signature
 - Can be detected with Far-IR
- Yellow pigmented polymer was obtained from a supplier
 - It was suspected to contain the banned pigment CdS
 - Mid-IR analysis using an ATR didn't show anything unusual

- Mid IR analysis
 - The spectrum shows spectral features of polyethylene and carbonated materials
 - There is not enough information to identify the yellow pigment composition

Far IR using the diamond ATR

• Shows that it contains cadmium pigment

Raman in Conjunction with FT-IR

Raman complements infrared information with crystallinity, density and inorganics ID

Polymer Orientation Studies

Polymer Orientation Studies (Raman)

Thermo Fisher

Raman complements FT-IR

Raman complements FT-IR

Thermo Fisher

Raman complements FT-IR

Thermo Fisher

Polyethylene is often classified according to density, which in turn depends on numbers and size of side branches.

Linear Low Density (LLDPE)
 Large numbers of short branches
 0.915 – 0.925 g/cm³

Medium density (MDPE)
 •0.926 – 0.940 g/cm³

High density (HDPE)

- Very few branches
- greater than 0.941 g/cm³

- NIR used for chemometric method development
- No sample preparation required

SCIENTIFIC

0.0820

- Ethylene/Polypropylene Copolymers
 - Ethylene may be added in various amounts to propylene to form copolymer material
 - These copolymer materials exhibit high stiffness and impact strength
 - Additionally they have better clarity and lower melting points than polypropylene alone.

28

- Quantitative results based on analyzing standard materials
- Method deployed into process
 plants using process instruments

FN

Nicolet iS50 TGA-IR

Identify residual solvent and decomposition products

TGA-IR: The Basics

Deformulation

- Reverse Engineering
- Failure Analysis
- Material Analysis
- Polymers
 - Plastic
 - Fillers, formulation
 - Biopolymers
 - Rubber (!)
 - Carbon Black: O-Rings, Tires
- Epoxies, Resins, Adhesives
- Pharmaceuticals
 - Entrained solvents, breakdown products
- Fabrics, Paper products

TGA-IR: 3-D Data Sets

TGA IR

- Deformulation and Failure Analysis
 - Rubber gaskets were failing
 - TGA analysis shows incorrect formulation

SCIENTIFIC

TGA IR

- Deformulation and Failure Analysis
 - Library search on the IR spectra
 - Missing ingredient: Bisphenol A

Complete Analysis: Mercury TGA

How Many Components?

SCIENTIFIC

Full Deformulation: 7 Components

Mercury TGA Also Works for Kinetics!

SCIENTIFIC

FT-IR to Get Your Job Done

- Bulk Polymer / Copolymer Analysis
- Inorganic fillers
- Crystallinity
- Raw Materials Method Development
- Deformulation

0

Upcoming Events

Trade Shows

• ANTEC, Booth #523

Cincinnati, OH, April 22-24

- Attend our live, on-booth presentations:
 - "Bringing More to the Material Characterization Party Coupling Raman and IR"
 - "Taking a Good Look Inside IR Deformulation Studies"
 - "Putting it Out There On-line IR Analysis"
 - "Characterizing Multi-Layer Materials IR and Raman Microscopy"
 - "A New Angle on Rheology Simultaneous FT-IR and Rheometry"
 - "The Right Stuff Extrusion and Polymer Processing"
 - "What went wrong Failure Analysis" special guest speaker, Jeff Jansen, the Madison Group
- ChinaPlas, Guangzhou, PR China, May 20 23
- Nordic Polymer Days, Helsinki, Finland, May 29-31
- K-Show International Trade Fair for Plastics and Rubbers, Dusseldorf, Germany, October 16 23

See other webinar offerings for FT-IR, Near-Infrared, Raman or UV-Vis at www.thermoscientific.com/spectroscopywebinars

• To contact our presenter, please email him at mike.bradley@thermofisher.com

