

Light element sensitivity: EDS detectors are NOT created equal

Keith Thompson Aug 2014

EDS detectors have come a long way over the past decade

Most people will tell you that all detectors are basically the same

In the "middle – high" energy range: detector performance is mostly the same between detectors.

In the "middle – high" energy range: detector performance is mostly the same between detectors.

EDS map at 145 eV

In the "middle – high" energy range: detector performance is mostly the same between detectors.

In the light element world: some EDS detectors just don't hold up.

Why are some detectors better than others at low energies?

- Impact of the SDD Module
- Impact of the architecture
- Impact of the window

Three main factors in SDD light element performance

Modern - tear drop, small FET

Traditional: wire-bonded FET vs.

Modern: integrated, "on-chip" FET

Traditional: N₂ backed window vs.

Modern: evacuated window

Light element sensitivity: "Sensitive to B"

Light element sensitivity: "Sensitive to Be"

Full scale counts: 9998 SN6551 Be 10 mm2

Impact of the module

N2 back-filled window Traditional round geometry

Evacuated window
Traditional round geometry

Evacuated window Tear-drop geometry

Some Examples

- Trace B in steel

Mapping 2% B in Fe-Cr: Traditional detector

B metal is easy for EDS/WDS

Trace B (2% B in Fe-Cr) is harder

Mapping 2% B in Fe-Cr

B raw counts

B WDS

- With an evacuated tear-drop detector trace B mapping is possible.
- 2. "Processing" the maps to remove background helps.
- 3. WDS still provides the best answer.

Some Examples

- Sn: Ni-Cu intermetallic

EDS Ni-Cu intermetallic

The goal is to examine potential interdiffusion through a thin barrier layer. Low kV analysis to avoid an interaction volume that may pollute the data

Spectrum analysis: EDS Ni-Cu intermetallic

Standard module

Advanced module

Spectrum analysis: WDS vs. EDS Ni-Cu intermetallic

EDS vs. WDS maps - Ni, Cu, Sn

EDS element maps are confounded

WDS element maps provide complete confidence

EDS vs. WDS maps – Ni, Cu, Sn – Processed!

The PROCESSED EDS element maps provide a better look

WDS element maps provide complete confidence

EDS vs. WDS maps – Ni, Cu, Sn – Processed!

Raw EDS element maps

PROCESSED – Net Counts – EDS element maps

Summary

- EDS detectors are not all the same.
- The light element performance is very different based on
 - SDD module type
 - Detector window
 - Overall detector architecture
- Know your application
 - Mid high energy applications: Most EDS detectors are fine
 - Low energy applications: Need the best possible EDS detector.
 - Often post-processing algorithms can extract the correct answer even when the raw data is confounding.