Enhancing Aluminum Scrap Sorting with Handheld XRF

Jonathan Margalit, Ph.D

Business Development Manager – Metals

Thermo Scientific Portable Analytical Instruments

5th Aluminium Sectional Forum Guangzhou, China September, 2013

Presentation Outline

- Aluminum was classified as a precious metal during the mid 19th century.
- Napoleon III gave aluminum cutlery to his most distinguished guests, the rest had to eat with gold cutlery...
- Once the Hall-Hèroult process was commercialized the price of aluminum plummeted from \$500/lbs → 0.25\$/lbs.

We Are the World Leader in Serving Science

We are the leading provider of analytical instruments, equipment, reagents and consumables, software and service for research, analysis, discovery and specialty diagnostics

Global Scale

- 39,000 employees in 40 countries
- \$12 billion in annual revenues
- Unparalleled commercial reach

Unmatched Depth

- Innovative technologies
- Applications expertise
- Laboratory productivity partner

Leading Brands

Unity[®]Lab Services

We enable our customers to make the world healthier, cleaner and safer

Portable Analytical Instruments

- Molecular analysis Leading field-deployed analytical instruments for human health and public safety, delivering lab-accurate analysis at the point of need
- Elemental analysis The pioneer in x-ray fluorescence (XRF) analysis, bringing the lab to the field with speed, accuracy, and ease of use

Stats:

- More than 400 employees worldwide
- Headquartered near Boston, USA
- Analyzer excellence recognized globally
 - Molecular More than 6,000 instruments deployed since 2005
 - Elemental More than 35,000 analyzers deployed since 1994

Key Developments in The Aluminum Industry

1) Increased demand for aluminum

- Industrialization in emerging markets
- Automotive: increased <u>build rates</u> and increasing <u>light content</u> (energy efficiency)
- Consumption forecasted to grow by 6% worldwide, propelled by strong growth in China
- 2) Primary production constraints
 - Growing demand \neq growing profits \rightarrow 25-30% of current production \leq breakeven point
 - Oversupply (5 mill. t stockpiled ≡ 75,000 Boeing 747s**)
 - Lower output (example: Rusal lowering output by 7% this year**)
- 3) Strong push to incorporate scrap as a raw material
 - Financial: 95% energy savings
 - Environmental: 95% green house emissions reduction
 - Regulatory compliance (LEED, CAFE)
 - Growing environmental awareness
 - Aluminum is 100% recyclable with no loss of quality

* Shipments of aluminum extruded products, The Aluminum Association

3: Increased Demand for Secondary Aluminum

Since 2001 the production of secondary aluminum has exceeded that of primary aluminum.

* Source: "Aluminum Statistics – U.S. Geological Survey", October 2010

Novelis: An Example for Higher Scrap Integration

As largest global purchaser, Novelis has a leadership role

From Novelis website, red arrow added by author

Benefits to Aluminum Manufacturers:

- Reduce dependence on mining and primary production
- Reduce carbon footprint
- Increase profitability

Scrap Trends:

- Higher recycling content
- Higher post-consumer scrap content
- Cross sector competition for scrap

4: The Role of Secondary Aluminum is Shifting

- The usage of secondary aluminum is shifting:
 - "Primary and remelted billet are completely interchangable"*
 - "..as long as the proper raw materials are used to achieve the necessary chemistry and specifications"
 - "Secondary aluminum could be used not just for castings, but also for painted automotive sheet"**
 - "..if the aluminum scrap is properly segregated"***

*According to US billet remelter, quoted from Metal Bulletin, November 2012/Number 9178

- ** According to Charles Bradford, Bradford Research, quoted from Metal Bulletin, November 2012/Number 9178
- *** According to Kay Meggers, Alcoa, quoted from Metal Bulletin, November 2012/Number 9178

Where's the Problem? Replacing Alumina with Scrap

Feed Material:	© Norsk Hydro		
Information availability about:			With XRF
Manufacturer			?
Composition			
Lot Information)	?
Country of Origin			?
Knowledge of Hazardous Materials			

Handheld XRF Technology Overview

1. Primary x-ray ejects K-shell electron

2. Electrons from higher shells fill in the gaps

- Differential energy state is released as fluorescence x-rays (element-specific)
 - 4. The x-ray energies are analyzed and compared with a built-in alloy library
- 5. Output:
 - Spectra
 - Positive grade identification
 - Elemental composition
 - Match level (0-4)

Detectable Elements Using Handheld XRF – Then

Latest Detector Technology: the Silicon Drift Detector

- Similar to Si PIN, but <u>larger surface area</u>, <u>higher quality Si</u>, <u>low leakage</u> <u>current</u>, <u>small anode capacitance</u>, and <u>unique electrode array</u>
- This means that the detector has:
 - Higher count rate
 - No detector dead-time
 - Higher resolution
 - Improved signal-to-noise ratio
 - Better efficiency, sensitivity, precision

Detectable Elements Using Handheld XRF – Now

The Result: In-Family Grade Separation Capabilities:

	Si		Fe		Cu		Mn		Mg	
	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max
2014	0.5	1.2	0	0.7	3.9	5	0.4	1.2	0.2	0.8
2024	0	0	0	0.5	3.8	4.9	0.3	0.9	1.2	1.8
3003	0	0.6	0	0.7	0.05	0.2	1.0	1.5	0	0
3004	0	0.3	0	0.7	0	0.25	1.0	1.5	0.8	1.3

Faster separation based on light element content - in air

Early Stage Material Qualification

SCIENTIFIC

16

Maximizing Savings and Profitability

6061 or 6063? What a difference a grade makes

Potential Cost Savings as a Result from Correct Grade Identification					
	Price Difference (6063-6061) USD/lb				
Annual Turnover ('ooo tons)	\$0.05	\$0.07	\$0.10		
24	\$2.6 M	\$3.7 M	\$5.2 M		
12	\$1.3 M	\$1.8 M	\$2.6M		
6	\$0.6 M	\$0.9 M	\$1.2M		

Application Example: Melt Feedstock Optimization

3105 can be made by using various alloy combinations:					
	А	В	С	n	
1100	70%	37%	30%		
3003	20%	37%	51%		
5052	10%	26%	19%		
Within 3105 Spec?					

Conclusion

- Aluminum scrap is becoming a strategic raw material.
- The portion and role of post-consumer scrap are shifting.
- There is a growing need to characterize this new "raw material".
- Thanks to technological advancements in handheld XRF, light element measurement capabilities (Mg, Al, Si, P, S) have improved significantly.
- Handheld XRF is a value-added tool, currently used by aluminum manufacturers and scrap yards operators to determine alloy grade and chemical composition.

Jonathan Margalit Thermo Fisher Scientific Email: jonathan.margalit@thermofisher.com Tel.: +1 (978) 215-1649

