

ThermoFisher SCIENTIFIC

How to Leverage Portable XRF for Exploration & Grade Control - 2019

Chris Calam – European Sales Manager Stand A13

The world leader in serving science

applied biosystems

invitrogen

fisher scientific **unity** labservices

The world leader in serving science

Handheld XRF – Used in Multiple Mining Applications

Thermo Fisher

Mining Applications

	Niton XL5	Niton XL3t Ultra	Niton XL3t GOLDD+	Niton XL3t	Niton XL2 Plus	Niton XL2
Base & precious metal exploration	*	*	*	*		
Ore trading	*	*	*	*	*	*
Base metals– grade control	*	*	*	*	*	*
Uranium ore	*	*	*	*		
Oil and Gas exploration	*	*				
Penalty elements	*	*	*		*	
Industrial minerals	*	*	*			
Soils - traces	*	*	*	*		

Set-up and working principle of Niton handheld x-ray fluorescence spectrometry

Simplified description

- X-ray radiation from the analyzer strikes the surface of the sample.
- The energy of the x-ray is transferred to the sample (Photoelectric absorption)
- The atom contained in the sample emit a characteristic x-ray fluorescence.
- The emitted x-ray photons produce an electric signal in the detector which is transmitted to the pre-amplifier (pre-amp)
- The electric signal is amplified in the pre-amp and transmitted to the digital signal processor (DSP)
- The DSP digitizes and sums the signals. The resulting spectrum is processed in the central processor unit (CPU) and treated to obtain the elemental analysis.
- The results of analysis are displayed in the screen and stored in the internal memory

- Geologists look for clues
- Costs millions of dollars to evaluate a property
- Data converted to information helps form a clearer picture of a deposits true economic value

What does Portable XRF have to offer in Exploration

- Soil survey and outcrop evaluation to map anomalies
- Target additional sampling in anomalous areas to identify drill targets
- Provide a geochemical data stream to the geologist
 - Improves confidence in daily decision making
- Speed up exploration efficiency, saving time and money
 - Compliments lab analysis
 - Pre-screen sample selection for lab analysis
 - Maximising analytical budgets
 - Reduce external assay & freight costs
 - Eliminate delays associated with analytical turnaround time

- Scan along or spot test large and well disseminated core for instant results
 - RAB/RC samples
- For poorly disseminated core (e.g. vein-like or spotty core) use the average function to generate composite values
- pXRF data ensures drilling is not halted above the base of the anomaly
 - Relocate to next drill hole if mineralization is tailing off
- Pre-screen core to prevent sending barren core to the lab
- Identify and measure valuable elements not expected to be on the property.

Thermo Fisher

- You've found something
- Commence step-out drilling
 - How far and deep does your mineralisation extend
- Infill drilling
 - Confirm the presence of mineralisation between step-out drill holes
- Cores split vertically
 - Half stored and analysed by pXRF
 - Half sent to the lab for assay
 - Assays to confirm pXRF data and grades
 - Economic extraction?
- Generate 3D models of the ore deposit
- Environmental assessments

What does Portable XRF have to offer in Grade Control?

- Improved mine efficiency through optimised extraction and processing
 - Better ore boundary definition
 - Instantly flag grade, sub-grade and waste
 - Prevent grade dilution
 - Improved stockpile management
 - Analyse blast hole cuttings
 - · Follow the mineralised veins
 - Drive efficient excavation decisions
 - Matrix specific calibrations
 - Confirm presence of penalty and credit elements
 - Optimise feed to the mill
- Environmental Management
 - Waste effluent monitoring
 - Mine decommissioning
 - Tailings, mineral waste
 - Soil remediation

Cu Performance on Blast Holes

"The Niton will not replace laboratory results, it merely takes the pressure off an over-worked on-site lab and enables geology staff to interact with other departments armed with up to date information"

What's Important in an Analyser?

What's Important in an Analyser?

- Performance Precision & Sensitivity
 - Accuracy & precision of results
 - Can we detect penalty elements
- Productivity Speed
 - How many test can be done in a day
 - · How quickly can penalty elements be quantified
- Reliability how rugged is the analyzer
 - Does it operate at extremes of temperature
 - Moisture resistant
- Ease of Use how easy / ergonomic
 - Simple download & conversion of data for GIS programs
- Changes the way we work
 - State of the art, modern design
 - Supports evolving needs of users
- Generate strong ROI

XL5 Power – 5W tube, Automatic Current Adjustment

LODs in ppm - pure silica

Thermo Fisher

Setting Up Your Analyser

- What do you want to achieve?
 - Define your objectives
 - Exploration map anomalies, may be no sample preparation
 - Mining company sample preparation, optimise calibration
 - Underground face mapping differentiate waste, low grade and high grade
 - Refiner optimised calibration to achieve lab quality data
 - What samples will you analyse
 - Direct on soil or outcrops
 - Diamond core or rock chips
 - Degree of sample preparation depends upon desired outcome
 - Grinding
 - Moisture control dilutes sample
 - Light elements important define sample preparation
 - Sample presentation
 - XRF sample cups, bags, pressed pellet, or direct on the sample
- All have implications for time, cost & accuracy

Setting Up Your Analyser

- Create internal SOP
 - Ensure it is implemented
 - Fine tune factory calibration using local reference standards
 - Optimise analysis times
 - Understand their impact on precision
 - Sample preparation what, if any?
 - Field, lab or both
 - QA/QC running blanks and CRM's to ensure good data quality
 - Decision criteria for sending samples for assay
 - Understand lab digestion method
 - Aqua regia, 4 acid digestion or fusion
 - Full extraction or partial extraction
 - Compare pXRF data with lab data,
 - Adjust SOP if required

Setting Up Your Analyser

- Ensure data generated is of the highest possible quality
 - Fit for purpose
 - Confidence in your data
 - Plan for success before you start

Sources of Difference between XRF and ICP/AA

- Heterogeneity of sample
- Sample preparation
- Incomplete digestion prior to ICP/AA
- Leading to incorrect interpretation of results

Certificate NIST SRM 2710A: total concentration vs. extraction in ppm. Recovery

Element	Certified	# Lab for	Range	Average	Recovery vs.
	Total	extraction	extraction	extraction	total
AI	59500 ± 500	6	8200-12000	10000	17%
Sb	52 ± 1.6	6	5-12	9.6	18%
As	1540 ± 100	6	1300-1600	1400	92%
Ва	792 ± 36	6	490-540	510	65%
Cd	12.3 ± 0.3	5	9.6-12	11	86%
Са	9640 ± 450	6	1700-2000	1800	19%
Cu	3420 ± 50	6	3100-3500	3300	95%
Со	5.99 ± 0.14	6	2.8-5.2	3.8	64%
Fe	43200 ± 800	6	30000-36000	34000	79%
Pb	5520 ± 30	6	4700-5800	5100	93%
Hg	9.88 ± 0.21	6	9.3-11.7	10	104%
Mn	2140 ± 60	6	1500-1800	1700	77%
К	21700 ±1300	6	3800-4700	411	19%
Zn	4180 ± 150	6	3300-4400	3800	90%

Blade Grinder

Rotary Sampler

Pelletizer

Benefits of Sample Preparation Zn/Pb/Ag

Less deviation due to inhomogeneity

Analysis Time – soil pulp, 10, 30, 60 second / filter

• Fe requires slope correction

Analysis Time and Precision

Mean measured value + 2σ
Mean measured value
Mean measured value - 2σ

Plot measured vs reference values

Fine tuning not required For Fe

When Setup Correctly - GIS Maps

Strip Logs – drill Core Niton vs Lab

Niton XL5: Enabled for Smart & Connected

23:52	2	i i 🖉 🎫
←	Fe ore	
#132	120.3 sec	3
Ele	%	±2σ
Fe	63.449	±2a 0.097
Fe Bal	63.449 26.536	0.097

Summary

- Niton XL5
- Delivering accuracy and speed
- Changing the way we work
- Suitable for hard rock, mineral fuels and industrial minerals
- Extending the capability of exploration

