

Thermo Scientific Portable XRF Analyzers

Latest Developments in PMI Tools, alloy verification and new applications

Mark Lessard Business Development Manager

The world leader in serving science

Analytical Capabilities

Portable XRF Analyzers in Oil & Gas

- 1. Offshore oil
- 2. Refinery & Petrochem plants
- 3. On-shore production: traditional
- 4. On-shore production: hydraulic fracturing
- 5. Midstream: Pipelines, Valves & Rail
- Liquid Natural Gas: Processing, Condensing & Import/Export
- 7. Tankers: Oil & Gas

New Construction: Do Not Rely Solely on Supplier MTRs

- Experience has shown that you cannot rely on material test reports (MTRs) alone; there can be significant errors.
- One customer site survey revealed that as much as 40% of MTRs did not match actual chemistry. They also tend to lose the reports. They get separated from the existing material.

"Trust but verify" – This is what PMI does !!!

				(F	ABRI	CANTE	E)				(Dirección
Teléfono:) Fax:)			METAL	LUR.	GICA	L TEST	REPO	ORT			
Mail To:					Sh	lp Te:					
(CLIENTI	E)					SAME		c	otomer: 77 Order: 496	Print Dat 65 Ship Dat Customer C	e: 01/06/199/ e: 01/06/199/ order: STOC#
STM Designationstomer Part N roduct Description	on: ASTM	A270-95a						Steel Tr	pe: 394/304	L	
Tubing S	ze		Length			3 A Certifie Material Fit	d d	1973	Heat Nu	mber	
Tubing S 1 X .00	ize 15		Length 240.0000		NSIDE/OU	3 A Certifie Material Fit TSIDE MECH	ANICAL PO	LISH	Heat Nu 63	umber 0213	
Tubing S 1 X .00	ize 15		Length 240.0000	8	NSIDE/OU	3 A Certifie Material Fir TSIDE MECH	nish Anical Po	LISH	Heat Nu 63	umber 0213	
Tubing Si 1 X .00 Heat Number	Carbon (C)	Manganese (Mn)	Length 240.0000 Phosphorus (P)	Sulfur (5)	Silicon (Si)	3 A Certifie Material Fir TSIDE MECH Chromium (Cr)	d nish ANICAL PO Nickel (Ni)	KISH Molybdenum (Mo)	Heat Nu 63 Nitrogen (N)	Titanium (Ti)	Aluminum (Al)
Tubing Si 1 X .00 Heat Number 680213	Carbon (C) 0.0230	Manganese (Mn) 1.7500	Length 240.0000 Phosphorus (P) 0.0200	Sulfur (5) 0.0040	Silicon (SI) 0.4400	3 A Certifie Material Fil TSIDE MECH Chromium (Cr) 18.1900	Nickel (NI) 8.1100	Molybdenum (Mo) 0.0110 Process Te	Heat Nu 63 Nitrogen (N) 0.0510 sting	10213 11tanlum (TI) 0.0000	Aluminum (Al) 0.0000
Tubing Si 1 X .00 Heat Number 680213 Heat Number	Carbon (C) 0.0230 Te	Manganese (Min) 1.7500 n (psi)	Length 240.0000 Phosphorus (P) 0.0200 Tid (psi)Elo	Sulfur (5) 0.0040	Silicon (SI) 0.4400 % (2	3 A Certifie Material Fi TSIDE MECH Chromium (Cr) 18.1900 Hard	Nickel (Ni) 8.1100	LISH (Mo)ybdenum (Mo) 0.0110 Process Te REV. Flat	Heat Nu 63 Nitrogen (N) 0.0510 nating tening Test:	Titanium (Ti) 0 0000 Pass	Aluminum (Al) 0.0000

New Construction: PMI Cycle Overview – Renewed & Now Required Emphasis

SCIENTIFIC

The world of Oil&Gas is Changing. Why is it important to analyze for residual elements?

- Unlike the old days when we mined ore from the earth to create our metals, today most all of our metals come from recycled scrap metal.
 - When mills melt down a lot of scrap metal (molten heat) it's difficult for them to insure that they are keeping the undesirables out of the melt
 - The mills do provide some kind of MTR for their customers, though those MTR's list the majors elements and not the minor elements (tramps).
- Today's crude oil's (and natural gas) have often different chemistries that can now interact with the Tramps and Residuals in the alloy compositions.
 - Higher levels of S and contaminants with thicker viscosities require higher pressures/ higher temperatures to transport and refine these oils.

What are the Residual/Tramp & Micro alloying elements?

- Cr, Ni, Cu residual elements
 - The Niton XL5t can measure Cr, Ni, and Cu at extremely low levels at petroleum refineries.
 - Cr+Ni+Cu must be less than 0.2%/2000 ppm...LOD for sum is 0.06%%/600 ppm at 5 sec per filter
- Si in C Steel for sulfidation corrosion (RP-939-C)
 - Si can be tested to assure levels above 0.1%
- Flow accelerated corrosion
- Cr > 0.1%, Cu, Mo
- Pipelines, Chemical composition of PSL 1
 - Cu < 0.5%
 - Ni < 0.5%
 - Cr < 0.5%
 - Mo < 0.15%
 - Nb + V < 0.06%
 - Nb + V + Ti < 0.15%

Residual Element Testing HF Piping, C Steel Material from Warehouse

- When testing HF Alkylation system piping, achieving high accuracy at low concentrations is critical. As such, sample preparation is very important.
- Objective is to discern whether the material contains Residual Element (RE) Sum (Cu+Ni+Cr) less than 2000 ppm (0.2%).
- RE Sum above that level can be an indicator of accelerated corrosion susceptibility.
- Inspectors want to ensure RE Sum levels are less than 2000 ppm to avoid excessive FAC and possible system failure.

Existing Piping Systems (Retroactive PMI) Programs

- Priority for API 578 3rd Edition:
- Residual Elements in Carbon Steels in Hydrofluoric Acid Alkylation Units – Note: Carbon steels in HF acid service have been reported to suffer increased corrosion rates based on the residual elements (RE) in steels.
- In general, it has been reported that steels with a high RE content are likely to suffer enhanced corrosion attack. Operators should review the potential impact of this in HF service.
- A guideline is that for base metal of <u>C> 0.18% wt% and Cu + Ni + Cr,</u> <u>0.15% wt % is optimum</u>. These values are critical as the type and concentrations to be measured will directly affect the analytical methods operations need to adopt.
- API RP 571 Pages 12,38

Existing Piping Systems (Retroactive PMI) Programs

Priority for API RP 578 2nd Edition – <u>"High Temperature Sulfidic Corrosion</u> – <u>API RP 939-C"</u>

- Process units susceptible to sulfidation:
 - Carbon steels with low silicon (0.10%) content can corrode at an accelerated rate
 - Assets at risk from this type of degradation should apply PMI control to determine silicon levels. <u>(Retroactive PMI is suggested and to follow API 578.)</u>

- See API 571 and API 1 - See Section 7.1.4 & 5	RP 939-C	
	NAV Tools He: Off	
	Time 23.2 sec	
	$Sample$ \pm LA-4130 0.6	
	preparation Ele & ±20	
	is require Si 0.252 0.075	
	Mo 0.210 0.006	
Page Aller Aller	Pb 0.053 0.006	
	Low Si-33 Cu 0.158 0.020	<u>ak-17%</u>
	Ni 0.132 0.028	
	Fe 97.18 0.42	
	Mn 0.578 0.036	
nite (D	Cr 0.973 0.026	

Inspection Program – Pipeline Material Compatibility when Welding

- API 5L-Line Pipe inspection for <u>chemical elements</u> for weld pre-heat and post heat treatment (PWHT-Stress Relief). Elements affect the <u>hardenability</u>, which affects the depth & distribution of hardness induced by quenching. The heat affected zone (HAZ). Leads to delayed hydrogen cracking, and loss in ductility and toughness.
 - PSL 1 Welded Pipe-API 5L Table 4 (X42 to X70 Welded Pipe)
 - PSL 2 Welded Pipe-API 5L Table 5 (X42M to X120M Welded Pipe)
- Maximum Carbon Equivalency-Table 5 (two formulas)

$$CE_{Pcm} = C + \frac{Si}{30} + \frac{Mn}{20} + \frac{Cu}{20} + \frac{Ni}{60} + \frac{Cr}{20} + \frac{Mo}{15} + \frac{V}{10} + 5B$$
Use when "Carbon Mass
Fraction" is: CE_{IIW} = C + \frac{Mn}{6} + \frac{(Cr + Mo + V)}{5} + \frac{(Ni + Cu)}{15}
Use when "Carbon Mass
Fraction" is: >/= 0.12%

• Maximum on elements that affect the carbon equivalency (CE) are:

• Mn, Cr , Mo , V , Ni , Cu (V, Si & B for CE*pcm*)

 XRF analyzer can put these formulas (less carbon) in the software and give you an <u>equivalency factor</u> (EQF) with all other elements and download them to an Excel spreadsheet.

XRF Example of Equivalency Factor (EQF)

Mercury in Oil & Gas Industry

Mercury in crude oil

- Naturally occurring element present in virtually all oil and gas worldwide
- Concentrations in reservoirs vary from low part per billion (ppb) to hundreds of ppb
- Hg Species in crude oil are typically elemental and/or inorganic compounds such as mercuric sulfide
- Hg Species from crude may accumulate in process equipment over time

Impact of Mercury

- Environmental and potential waste issues
- Health and safety issues: volatile sources, surface contamination, particulate contamination during hot work. Assets exposed to mercury must be decontaminated prior to further use.
- Safety issues: corrosion by metal amalgamation or possible liquid metal embrittlement (LME)

Mercury clean up. PSC worker using "special" mercury vacuum on flange.

Mercury Contamination of a PIG

- PIG <u>P</u>ipeline <u>Inspection</u> <u>G</u>auge
- Use XRF to analyze and monitor mercury contaminated parts of a PIG unit as they go through a cleaning and decontamination process
- PIG is placed into a closed tank and flushed with a decontamination solution to remove all surface contamination prior to the units disassembly.
- After disassembly all the parts are measured with XRF to verify mercury level.
- Mercury levels will decrease after each stage of the decontamination process.
- The ability to measure mercury contamination will assist customers in monitoring contamination of their systems

After Initial Clean

After Run 1

Niton XL3t mercury measurement

- The handheld XRF technique offers a quick, and cost effective way of screening mercury surface contamination
- The mercury analysis is available as an <u>option</u> for XL3t instruments:
- General Metals mode:
 - Reports mercury as % weight or ppm
 - For quick pass/fail screening
- Coatings mode:
 - Report mercury as coating weight (µg/cm2).
 - Determines the precise amount of mercury
- Niton XL3t 980 GOLDD+ mercury detection limits is less than 1 µg/cm2 (30s)
- The most common alloys such as iron, nickel or copper do not form alloys with mercury, mercury is always surface contamination, which makes the coating weight analysis the best way to quantify amount of mercury.

Niton XL3t 980 GOLDD+ accuracy and repeatability using coatings mode analysis.

	Hg (µg/cm2)
1	2.82
2	2.47
3	2.74
4	2.15
5	2.23
6	2.62
7	2.83
8	2.53
9	2.01
10	2.19
Avg.	2.46
Std. Dev.	0.30
Given	2.70

PMI for Refractory Applications in Petro-Chemical and Refinery Processes

- FCC Units
- Crude Units
- Sulfur Units
- Acid Production units
- Cokers
- Reactors
- Regenerators
- Heaters
- Boilers
- Etc.....

Table 5 - Plug header and return bend materials

Material	ASTM specifications					
	Forged	Wrought	Cast			
	A105					
Carbon steel		A 234, WP8	A 216, WCB			
	A 1B1, class 60 or 70					
С-1/2Мо		234, WP1	A 217, WC1			
1 1/4Cr-1/2Mo	5	234, WP11	A 217, WC6			
21/4Cr-1Mo		234, WP22	A217, WC9			
3Cr-1Mo		-	-			
5Cr-1/2Mo	A A A A A A A A A A A A A A A A A A A	234, WP5	A217, C5			
9Cr-1Mo		234, WP9	A 217, C12			
9Cr-1Mo-V	E ANTI	234, WP91	A217, C12A			
18Cr-8NJ Type 304		03, WP304	A 351, CF8			
18Cr-8Ni Type 304H)3, WP304H	A 351, CF8			
18Cr-8Ni Type 304I		03, WP304I	A 351, CF8			
16Cr-12Ni-2Mo Type 316	The second second	03, WP316	A351, CF8M			
16Cr:12Ni-2Mo Type 316H)3, WP316H	A351, CF8M			
16Cr-12NI-2Mo Type 316I		03, WP316l	A351, CF3M			
18Cr-10NI-3Mo Type 317		03, WP317	-			
18Cr-10Ni-3Mo Type 317I		03, WP317I	-			
1 BCr-10Ni-Ti Type 321		03, WP321	-			
18Cr-10Ni-Ti Type 321H)3, WP321 H	-			
18Cr-10Ni-Nb Type 347		03. WP347	A351. CF8C			
18Cr-10NI-Nb Type 347H)3, WP347H	A351,CFBC			
Nickel alloy BOOH/800H7S		8366	A 351, CT-15C			
25Cr-20Ni	A 182 E310	A403 E310	A 351, CK-20			
2301-20141	A 102, F310	A403, F310	A 351, HK40			
a Minimum grain size shall be ASTM #5 or coarser.						

Material	ASTM Specification			Maximum Design Temperature		
	Casting		Plate		°C	(OF)
Carbon steel	A216 GrWCB		A283GrC		425	(800)
21/4Cr-1Mo	A217 GrWC 9		A 387 Gr 22, Class 1		650	(1 200)
5Cr-1/2Mo	A217 GrC5		A 387 Gr 5, Class 1		650	(1 200)
19Cr-9Ni	A 297 Gr HF		A 240, Type 304H		815	(1 500)
25Cr-12Ni	-		A 240, Type 309H		870	(1600)
25Cr-12NI	A 447 Type II		-		980	(1 800)
25Cr-20NI	-		A 240, Type 310H		870	(1 600)
25Cr-20Ni	A351 Gr HK40		-		1090	(2000)
50Cr-50NI-Nb	A 560 Gr 50Cr-50Ni		\ <u>-</u> /		980	(1 800)
For exposed radiant and shield-section tube supports, the material shall be 25Cr-12Ni or higher alloy.						

Refractory Anchors

- Refractory metal is available in hex steel grid, special grid and expanded metal. All material is available in stainless steel and grades T304, T316, T310, T330 as well as all of the standard grades.
- Other refractory insulation and refractory lining products include wire mesh, expanded metal mesh and hex steel grid. Contact us today for a quote.
- Refractory anchors and related materials are used for anchoring and assembling refractory ceramic fibre linings or for reinforcing monolithic linings of castables, plastics or ramming mixes

Table 11 - Maximum temperatures for anchor tips

	Anchor material	Maximum anch	nor temperature
		'C	(OF)
	Carbon steel	455	850
	TP 304 stainless steel	760	1400
Ų	TP 316 stainless steel	760	1400
and a state of the state	TP 309 stainless steel	815	1500
	TP 310 stainless steel	927	1700
Ready TO Test	TP 330 stainless steel	1038	1900
	Alloy 601 (UNS N06601)	1093	2000
Image: Delta Entry Tools	Ceramic studs and washers	> 1093	> 2000
PMI Confirm	ns the Correct Material is Insta	lled for the Corr	ect Temperature

Thermo Fisher

Refractory Brick PMI Inspection Possibilities

- How do you confirm on "Turn-a-rounds" and Maintenance the correct Refractory Material is properly replace ?
- Thermo Niton XRF can verify all refractory materials
 - Refractory anchors, tips, support materials
 - Refractory fibre
 - Refractory board
 - Refractory bricks

Other refinery applications

Coating thickness

• Polymer analysis

• Gasket analysis

 Scaling and corrosion residue, deposits

Accessories

- Wireless Printer
- Barcode reader
- Portable Test Stand
- HotFoot
- Hotwork Standoff

Recording & Reporting PMI Test Results: API RP 578

Traceability to field components; the **information listed in "PMI Test Records"** should be reported in such a manner that they are traceable to the point of installation.

The best way to tie the "**Report Documentation**" to the field **P&ID or ISO drawings**, is to mark the drawings (electronically or manually) and enter this (drawing number) in the XRF/OES analyzer.

It is strongly suggested that **you keep both paper and electronic files** on this documentation.

Thermo Fisher SCIENTIFIC

Camera and Small Spot Features

- The integrated color CCD camera & small spot, built into the nose of the analyzer
- Allow the user to
 - View a live picture of the analysis area,
 - Save the image along with the elemental analysis results and spectra.
- Here we are viewing a welded object through the lens of the Thermo Scientific Niton XL3t analyzer camera.

Contribution of filler material:	Contribution of Member A	Contribution of Member B			
.70 x .70 = 49% Ni	.15 x .67 = 10% Ni	.15 x .08 = 1.2% Ni			
.70 x .15 = 10.5% Cr	.15 x .32 = 4.8% Cu	.15 x .18 = 2.7% Cr			
.70 x .08 = 5.6% Fe		.15 x .74 = 11.1% Fe			
The final weld bead chemistry should be: 60.2% Ni (49% + 10% + 1.2%); 13.2% Cr (10.5% + 2.7%); 16.7% Fe (5.6% + 11.1%); and 4.8% Cu.					

Field Use for Hot Pipes and Difficult Access

Extension Pole

- Variable pole length
- Dual Electronic Triggers
- Clip on Tri-Pod adapter for hands-free analysis of samples on ground or table

Niton XL3t *without* hot work standoff: <u>150°C (max)</u>

Niton XL3t *with* hot work standoff: <u>500°C (max)</u>

Niton XL3t with HotFoot[™] hot surface adapter: <u>450° C</u> (max)

