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Goals
Demonstrate quick and easy chemometric strategies 

to develop an accurate protein quantification model for 

downstream applications using only a single spectrum of 

known concentration. Highlight the developed strategy’s 

performance and transferability across quantification of 

other types of monoclonal antibodies (mAbs), different 

matrices, and processes. 

Key analytes
Protein (mAb) quantification

Key benefits
• Cost and time savings from eliminating the  

need for extensive training data collection and  
laboratory analytics

• Enable immediate deployment into process monitoring 
and control, allowing customers to leverage the 
numerous benefits of process Raman spectroscopy



The successful deployment of Raman spectroscopy to 

monitor complex processes relies on the robustness of 

chemometric models, which typically require large datasets 

and sophisticated algorithms. The time and cost associated 

with generating extensive and reliable training datasets often 

hinder the adoption and integration of Raman technology in 

biopharmaceutical applications. In this work, we introduce a 

chemical information-based approach to develop a robust and 

accurate chemometric model with a minimal training dataset. 

We employed the classical least squares (CLS) algorithm 

using a selected region of a single spectrum of a protein with 

a known concentration to develop a protein quantification 

model for monitoring ultrafiltration/diafiltration (UF/DF) in 

downstream processing. The performance of the CLS model 

and its transferability across different monoclonal antibodies 

are discussed. This approach can also be leveraged to build 

quick and accurate chemometric models for various other 

applications, making Raman technology more accessible for 

adoption and utilization.

Data acquisition and chemometric modelling
A monoclonal antibody (mAb; protein) at a concentration 

of 93.56 mg/mL in a formulation aqueous buffer containing 

histidine, arginine, and sucrose was passed through a Thermo 

Scientific™ MarqMetrix™ FlowCell Sampling Optic at a flow rate 

of 100 mL/min. Raman data were acquired during the dynamic 

flow using a Thermo Scientific™ MarqMetrix™ All-In-One Process 

Raman Analyzer with acquisition parameters of 450 mW 

power, 3000 ms integration time, and 3 averages. Ten spectra 

were acquired and preprocessed to remove any cosmic ray 

interference. The ten spectra were then averaged into a single 

spectrum that was used to build the CLS model.

Two spectral regions were selected before developing the CLS 

model: 3100 to 3230 cm⁻¹ (water band) and 1570 to 1750 cm⁻¹ 

(protein amide I region). The infinity norm for the 3100 to 

3230 cm⁻¹ spectral region was calculated and used as a weight 

to normalize the entire spectrum, correcting spectral path 

differences. Baseline features were removed by applying the 

Savitsky-Golay filter (2nd derivative, polynomial order = 2, window 

width = 13). The derivatized spectrum was then used to develop 

the CLS model, which in essence is a ratio-metric model that 

translates the ratio of Raman intensity of the amide I band to the 

water band into predicted concentrations.

Demonstrating a simpler chemometric approach for quantifying protein concentration in a downstream ultrafiltration/diafiltration  
(UF/DF) processing using process Raman.
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Following the CLS model development, validation data 

were acquired using the same parameters over the mAb 

concentration range of 0 to 155 mg/mL in the same formulation 

buffer. The model’s performance was further validated by 

applying it to the UF/DF process with different mAbs and 

by including tryptophan in the formulation buffer alongside 

histidine, arginine, and sucrose. A brief comparison of CLS and 

partial least square (PLS) models was also performed. 

All data management, cosmic ray removal, averaging, and 

timestamp alignment were performed in Python™ programming 

language. The data were then processed in a commercially 

available chemometric package. All chemometric works 

were performed using software package SOLO 9.3.1 (2024), 

Eigenvector Research. Inc., Manson, WA USA 98831.

Results and discussion
Standard normal variate (SNV) is a widely used normalization 

technique for spectroscopic data to correct for path length 

differences.¹ While effective when the primary contribution to 

variables is noise and they share the same overall signal,  

SNV may lead to non-linear responses if the overall signal 

changes significantly between samples.² This may especially 

be true in downstream processes where concentrations are 

high and dynamic changes result in rapid changes in spectral 

features and intensities. In this study, we opted to use the  

water band as an internal standard to normalize the spectra as 

the water concentration remains relatively constant throughout 

the bioprocesses.³–⁵

The region from 3100 to 3230 cm⁻¹ includes the Raman band 

attributed to the symmetric stretching of the O-H vibrational 

bond in water molecules. The O-H stretching vibrational 

band is susceptible to changes in pH, ionic strength, and 

temperature; nevertheless these parameters are well-defined 

and controlled during process development. This ensures the 

reliability of this region for spectral normalization. Additionally, 

unlike the symmetric bending vibration of water molecules at 

1640 cm⁻¹, the 3100 to 3230 cm⁻¹ spectral region has minimal 

spectral overlap from the constituents commonly used in 

the downstream processes. This makes it a viable option for 

spectral normalization.⁶

One concern is the low quantum efficiency of silicon optical 

sensors in this high Raman shift region. We, and others, have 

previously used this region for modelling, and the region’s 

performance has proven to be acceptable, likely because the 

high concentration of water (~55.5 M) compensates for the 

limitation in efficiency.³–⁵ 

Figure 1a shows the average spectrum used for building the 

training model, while Figure 1b presents the 2nd derivative plot 

of the Raman spectra in the amide I region of mAb. The amide I  

region spans the Raman shift from approximately 1630 to 

1700 cm⁻¹, primarily influenced by the variations in the energy 

of C=O symmetric stretching vibrations in different secondary 

structures of mAb⁷. Our previous work has demonstrated that 

the amide I region is free of spectral interferences and can be 

effectively utilized to develop models with high specificity for 

mAb for downstream processes.³,⁵ Consequently, the amide I  

region was selected for the CLS model. The Savitsky-Golay 

filter (2nd derivative) was used in the preprocessing step to 

remove the baseline shifts as well as the broad water band, 

ensuring that the Raman information from the mAb is used to 

train the model.

Figure 1. (a) Selected region used for chemometric model 
development. The amide I region provides specificity  
to the model for mAb while the water band is used for  
correction of spectral path length differences. (b) Showing  
the 2nd derivative preprocessed spectrum of amide I region  
used for model development. 
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The CLS model is a quantitative analytical method that explains 

the observed spectrum of a given sample by using the linear 

combination of the spectra of the pure components present 

in the sample.⁸ For the CLS model to perform accurately, it is 

essential to acquire the pure spectrum for each component of 

the mixture, which is practically challenging or impossible for a 

complex bioprocess. This problem is addressed in this study 

by using the mAb-specific amide I region that is free of spectral 

overlap. If a larger region is used to create the model, the CLS 

model showed a decrease in performance (data not shown).

The loading for the CLS model is shown in Figure 2. The model 

has high influence from the Raman shift at approximately 

1670 cm-1 in the amide I region, which is assigned to the 

symmetric C=O stretching of the β-sheet secondary structure 

of the mAb, thus providing specificity to the model. As expected 

for the single-component CLS model, the loading and the 

preprocessed spectrum are similar (compare Figures 1b and 2). 

The CLS model was then applied to the validation dataset 

(shown in Figure 3a) across a wide concentration range in 

different buffer matrices: 0 mg/mL in water; 1 to 33 mg/mL  

in tris buffer; and 33 to 155 mg/mL in histidine, arginine,  

and sucrose buffer. Across the concentration range in 

diverse buffer components, the root mean square error of 

prediction (RMSEP) was approximately 2.25 mg/mL as shown 

in the correlation plot of Figure 3b. The low RMSEP for the 

concentration range of 0 to 155 mg/mL demonstrates excellent 

model performance and transferability across buffer matrices.

Note that the spectra shown in Figure 3a exhibit differences  

in water band intensities at approximately 3240 cm-1. The water 

concentration is relatively constant across the samples. 

These differences in intensities within the water band indicate 

variations in optical path length during data acquisition,  

caused by turbidity and occasionally small air bubbles trapped 

inside the MarqMetrix FlowCell probe. The inclusion of water 

band normalization in the CLS model appropriately corrects for 

the path length differences and improves prediction accuracy. 

Additionally, no baseline was removed before water band 

normalization. Although the data is not shown, the CLS model 

demonstrated similar performance with or without baseline 

removal (using automatic Whittaker filter and automatic 

weighted least squares) before water band normalization. 

Figure 2. The regression vector for the CLS model demonstrating 
the influence of the approximately 1670 cm-1 Raman shift  
in the amide I region, which is assigned to the symmetric C=O 
stretching of the β-sheet secondary structure of the mAb.
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Figure 3. (a) Spectral data used for validation of the CLS model. 
Also, highlighted are the differences in the intensities of water 
band across spectra which substantiate the need of inclusion  
of the water band normalization step in the model. (b) Correlation 
plot for measured vs. predicted concentration along with 
performance statistics shown as inset.
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To validate the performance of the CLS model, the training  

and validation data used to develop the CLS model were 

combined into a single dataset. The combined data was 

fed into the PLS algorithm using the same spectral region 

and preprocessing as the CLS model. A one-latent-variable 

PLS model was selected based on the leave-one-out cross-

validation (LOOCV) strategy, where each class was left 

out once. The root mean square error of cross-validation 

(RMSECV) was calculated, as shown in inset of Figure 4. 

The RMSECV for the PLS model was 2.88 mg/mL, while the 

RMSEP for the CLS model was 2.24 mg/mL. The RMSEP of 

CLS model and RMSECV of the PLS model is not a direct 

comparison, nonetheless, with some approximation, these 

results do indicate that the CLS model performed comparable 

to the PLS model.

To further test the model’s performance, scalability, and 

transferability, we applied the lab-based PLS and CLS models 

to Raman data collected in-line during a UF/DF pilot run. This 

run used a different type of mAb and a formulation buffer. The 

buffer included tryptophan, histidine, arginine, and sucrose 

that were added during diafiltration.  We have described the 

relevance of this experiment before.³ The predicted protein 

concentrations from the CLS and PLS models showed a high 

correlation. This is shown in Figure 5 with the orange and 

blue traces. The pooled samples (marked by red stars) were 

measured using HPLC and UV-Vis spectroscopy. The absolute 

prediction errors for both models are shown in Table 1.

The predictions from the CLS model exhibited lower errors 

compared to the PLS model, however it does not mean CLS 

is superior to PLS based on a statistically insignificant sample 

size of n=1 dataset. In this study, the CLS model was built 

by selecting the amide I region that has high specificity for 

mAb and minimum spectral interferences If the entire spectral 

region was used with complex spectral overlap or in cases 

with ill-conditioning matrix and multicollinearity, PLS or other 

regression models are better choices with a multitude of other 

advantages. Additionally, using different regions of spectra and 

other combinations of preprocessing, the performance of the 

PLS model may be further improved in the above case. Here, 

PLS is used only as reference but not for comparison. 

Figure 4. PLS model shown with model statistics in inset. The 
training and test dataset used for the CLS model were combined 
to develop the PLS model. The RMSECV of the PLS model 
calculated using leave-one-out cross validation is close to the 
RMSEP for the CLS model, indicating similar model performance.
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Figure 5. This plot shows the agreement in prediction of protein 
concentration from the PLS (orange) and CLS (blue) models for 
the UF/DF run.

Table 1. Performance of CLS model.
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Conclusion
This study demonstrated an alternative approach of a  

single-spectrum-based CLS model for protein quantification 

in downstream bioprocesses. The CLS model exhibited lower 

prediction errors than the broadly acceptable tolerance of  

< 5-10 % for process monitoring. It also showed that the  

single-spectrum-based CLS model has scalability from lab 

to pilot scale and transferability across different monoclonal 

antibody and buffer matrices.

A key factor in the successful implementation of the CLS 

model was appropriate region selection. We found that the 

unique Raman signature of the amide I region of monoclonal 

antibodies has minimal spectral interference from other 

constituents commonly used in downstream processes.³,⁵  

This allowed us to develop a mAb-specific CLS model using 

the Raman intensity of the amide I region that linearly scales 

with the concentration. Identifying similar unique regions in 

other applications can provide a rapid and straightforward 

method to build robust and accurate chemometric models. In 

addition, augmenting more data to the CLS model especially 

at the upper and lower concentration range will further improve 

the model.

Another important aspect involves normalizing the spectra 

using the O-H symmetric stretching Raman band of water 

molecules. Recent literature has also utilized a similar 

normalization strategy for developing chemometric models  

for upstream bioreactor monitoring.⁴ This strategy appears to 

work across all modalities.

Finally, the ability to build the chemometric model using a 

minimal dataset not only facilitates the adoption of Raman 

technology but also broadens its applicability.
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