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Introduction
Bioreactors have emerged as indispensable tools in bioprocessing, revolutionizing 

the production of many biotechnological products.¹,² They provide controlled and 

optimized environments for enhancing cell cultivation and are thus extensively 

used in various industries, ranging from biopharmaceuticals to food production. 

The consistency and high quality of products derived from bioreactors depend on 

the proper control of the critical process parameters (CPPs) like pH, temperature, 

dissolved oxygen, nutrient availability, cell density/viability, and others. Recognizing 

the importance of real-time monitoring and control of CPPs, the U.S. Food and Drug 

Administration (FDA) has emphasized the integration of process analytical technology 

(PAT) into pharmaceutical manufacturing following the principles of quality by design 

(QbD).³ The PAT framework promotes the use of advanced analytical technologies 

in an integrated synergy with chemical, physical, microbial, mathematical, and risk 

analyses to enable understanding and control of CPPs. As outlined in the FDA 

guidance, the overall objectives of PAT are as follows:

•	 Control process variability and ensure product consistency and quality.

•	 Reduce production cycle time.

•	 Prevent rejection, scrap, and reprocessing.

•	 Introduce the potential for real-time release.

•	 Increase automation to improve safety and reduce human error.

•	 Facilitate continuous processing to improve efficiency, manage variability, and 
improve capacity.



Process Raman is one such PAT solution that is rapidly being 

adopted by industries.⁴ Process Raman has several competitive 

advantages over other technologies for bioprocess monitoring. 

It offers benefits such as low water background interference, 

high molecular specificity, simple spectral interpretation due to 

fewer overtones and combination bands, the ability to probe 

biomolecules in their native state, non-destructive analysis, 

rapid measurements, and easy integration with automation.⁵ 

All these attributes make Process Raman a powerful PAT 

tool for monitoring cell cultures in a bioreactor. By integrating 

process Raman into bioreactors, operators can gain rapid, 

actionable, and accurate insights on CPPs, facilitating timely 

adjustments and optimizing bioprocess parameters. This 

real-time monitoring enables efficient process control, reduces 

batch-to-batch variability, and ensures uniform product quality 

throughout the manufactured batches.⁶

The success of process Raman for monitoring and controlling 

bioreactors depends on the performance of chemometric 

models.⁷ These models translate the spectral data into 

meaningful and actionable information. The chemometric 

models are developed in a multi-stage and iterative 

process (shown in Figure 1) that requires significant time, 

cost, resources, and technical expertise. The chemical 

compositions inside bioreactors are highly complex due to 

the presence of multiple components, each contributing 

its own Raman signature. This results in a mixture of 

overlapping spectral features. Furthermore, the dynamic 

nature of bioreactor systems, with continuous changes in 

component concentrations and interactions (e.g., different 

feeding materials and schedules), further adds complexity 

to the Raman spectra. Thus, a large set of training data with 

associated offline reference values is required to build robust, 

reliable, and accurate chemometric models. These models 

undergo multiple rounds of optimization and validation before 

they can be confidently deployed for process monitoring. 

Even after deployment, the performance of models needs to 

be monitored. Whenever there is a change in processes, the 

models may require updates or re-optimization using additional 

data, as shown in Figure 1. Thus, developing accurate and 

reliable chemometric models is often an obstacle to the 

widespread adoption of process Raman technology. 

To address this bottleneck, we gathered the Raman data from 

various bioreactor runs and used it to develop the chemometric 

“core” models for real-time monitoring of glucose and lactate. 

These core models were tested across multiple cell lines, 

media, scales, and different processes and instruments. As 

demonstrated previously, the core model showed excellent 

transferability. In this note, we provide detailed information 

on these core models to facilitate easy integration of process 

Raman for bioreactor monitoring. 

Experimental details
1. Data collection
The Raman data were collected in the “in-line” mode using a 

Thermo Scientific™ MarqMetrix™ All-In-One Process Raman 

Analyzer integrated with an immersible probe (Figure 2). The 

signal acquisition parameters were initially optimized and set 

to a power level of 450 mW, exposure time of 3000 ms, and 

20 averages for all runs. Data were continuously acquired 

throughout the 2-week run, with one Raman spectrum 

recorded every 2 minutes. 

Figure 1. A general workflow of chemometric model building and 
implementation.

Figure 2. MarqMetrix All-In-One Process Raman Analyzer with 
immersible probe.
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The training data were collected in different bioreactors conducted using a variety of 

cell lines and different initial and feed media, as specified in Table 1. The bioreactors 

were operated in various modes, including fed-batch, perfusion, and hybrid perfusion, 

with different feeding strategies such as bolus, continuous, or a combination of both. 

Additionally, the data were collected from bioreactors of various scales, including  

3 L and 5 L glass bioreactors and a 500 L Thermo Scientific™ DynaDrive™  

Single-Use Bioreactor (S.U.B.). Finally, a total of six different instruments were used for 

data collection. All these variations in the training dataset were intentionally introduced 

to capture the variation with changes in process, scales, and instruments. 

During the bioreactor run, samples were aseptically pooled and sent for at-line or offline 

reference value analysis. The timestamp for pooled samples was recorded for data analysis.

Table 1.

Run 
# Cell Line Initial Media Feed Media 1 Feed 

Media 2
Feed Media 
Type

Glucose 
Feeding Type

Run 
Mode Reactor Type

1 ExpiCHO 1C6 ExpiCHO SPM + 6 mM L-Glutamine + 2 g/L pluronic EFC 2X 3% Weight/Day None Bolus Bolus Fed Batch 5L Glass

2 ExpiCHO 1C6 ExpiCHO SPM + 6 mM L-Glutamine + 2 g/L pluronic EFC 2X 3% Weight/Day None Bolus Bolus Fed Batch 5L Glass

3 CHO-M Balance CD CHO growth A + 6 mM L-glutamine  
+ 1 g/L pluronic Cell Boost 7a Cell 

Boost 7b Bolus Bolus Fed Batch 500L Dyna Drive

4 ExpiCHO 1C6 ExpiCHO SPM + 6 mM L-Glutamine + 2 g/L pluronic EFC 2X 3% Weight/Day None Bolus Bolus Fed Batch 5L Glass

5 ExpiCHO 1C6 ExpiCHO SPM + 6 mM L-Glutamine + 2 g/L pluronic ExpiCHO SPM + 6 mM 
L-Glutamine + 2 g/L pluronic None Continuous Bolus Hybrid 

Perfusion 500L Dyna Drive

6 ExpiCHO 1C6 ExpiCHO SPM + 6 mM L-Glutamine + 2 g/L pluronic EFC 2X 3% Weight/Day None Bolus Bolus Fed Batch 500L Dyna Drive

7 ExpiCHO 1C6 ExpiCHO SPM + 6 mM L-Glutamine + 2 g/L pluronic EFC 2X 3% Weight/Day None Bolus Bolus Fed Batch 5L Glass

8 ExpiCHO 1C6 ExpiCHO SPM + 6 mM L-Glutamine + 2 g/L pluronic Continuous, EFC 2X 3% 
Weight/Day None Continuous Continuous/

Bolus Fed Batch 5L Glass

9 ExpiCHO 1C6 ExpiCHO SPM + 6 mM L-Glutamine + 2 g/L pluronic EFC 2X 3% Weight/Day None Bolus Bolus Fed Batch 500L Dyna Drive

10 ExpiCHO 1C6 ExpiCHO SPM + 6 mM L-Glutamine + 2 g/L pluronic ExpiCHO SPM + 6 mM 
L-Glutamine + 2 g/L pluronic None Bolus Bolus Perfusion 500L Dyna Drive

11 ExpiCHO 1C6 ExpiCHO SPM + 6 mM L-Glutamine + 2 g/L pluronic Continuous, EFC 2X 3% 
Weight/Day None Continuous Continuous/

Bolus Fed Batch 5L Glass

12 ExpiCHO 1C6 ExpiCHO SPM + 6 mM L-Glutamine + 2 g/L pluronic Continuous, EFC 2X,  
VCV Model None Continuous Continuous Fed Batch 500L Dyna Drive

13 ExpiCHO 1C6 ExpiCHO SPM + 6 mM L-Glutamine + 2 g/L pluronic Continuous, EFC 2X,  
VCV Model None Continuous Continuous/

Bolus
Intensified 
Fed Batch 5L Glass

14 ExpiCHO 1C6 ExpiCHO SPM + 6 mM L-Glutamine + 2 g/L pluronic Continuous, EFC 2X Glucose 
free, 3% Weight/Day None Continuous Continuous/

Continuous Fed Batch 5L Glass

15 ExpiCHO 1C6 ExpiCHO SPM + 6 mM L-Glutamine + 2 g/L pluronic ExpiCHO SPM + 6 mM 
L-Glutamine + 2 g/L pluronic None Continuous Continuous Perfusion 5L Glass

16 CHO K1 ExpiCHO SPM + 6 mM L-Glutamine + 2 g/L pluronic EFC 2X 51 ml None Bolus Bolus Fed Batch 3L TruBio6

17 ExpiCHO 1C6 ExpiCHO SPM + 6 mM L-Glutamine + 2 g/L pluronic ExpiCHO SPM + 6 mM 
L-Glutamine + 2 g/L pluronic None Continuous Continuous Perfusion 5L Glass

18 NistCHO EX-CELL® Advanced™ CHO Fed Batch medium NISTCHO is EX-CELL® 
Advanced™ Feed None Bolus Bolus Fed Batch 3L TruBio6

19 HEK293 Expi293 expression media Expi293 expression media None Continuous Continuous Perfusion 5L Glass

20 ExpiCHO 1C6 HipCHO media HipCHO media None Continuous Continuous Perfusion 5L Glass

21 ExpiCHO 1C6 ExpiCHO SPM + 6 mM L-Glutamine + 2 g/L pluronic EFC 2X 3% Weight/Day None Continuous Continuous Fed Batch 500L Dyna Drive

22 ExpiCHO 1C6 ExpiCHO SPM + 6 mM L-Glutamine + 2 g/L pluronic ExpiCHO SPM + 6 mM 
L-Glutamine + 2 g/L pluronic None Continuous Continuous Perfusion 5L Glass

23 ExpiCHO 1C6 ExpiCHO SPM + 6 mM L-Glutamine + 2 g/L pluronic EFC 2X 3% Weight/Day None Continuous Continuous Fed Batch 3L TruBio6

24 ExpiCHO 1C6 ExpiCHO SPM + 6 mM L-Glutamine + 2 g/L pluronic EFC 2X 3% Weight/Day None Bolus/Continuous Bolus/Continuous Fed Batch 5L Glass

25 ExpiCHO 1C6 ExpiCHO SPM + 6 mM L-Glutamine + 2 g/L pluronic ExpiCHO SPM + 6 mM 
L-Glutamine + 2 g/L pluronic None Continuous Continuous Perfusion 3L TruBio6

26 ExpiCHO 1C6 ExpiCHO SPM + 6 mM L-Glutamine + 2 g/L pluronic EFC 2X, Capacitance  
VCV model None Continuous Continuous Fed Batch 500L Dyna Drive

27 ExpiCHO 1C6 HipCHO media HipCHO media None Continuous Continuous Perfusion 3L TruBio6

28 ExpiCHO 1C6 ExpiCHO SPM + 6 mM L-Glutamine + 2 g/L pluronic EFC 2X 3% Weight/Day None Continuous Continuous Fed Batch 3L TruBio6

29 CHO-K1 HyCell CHO Medium CellBoost 7A Cell 
Boost 7b Bolus Bolus Fed Batch 5L Glass

30 ExpiCHO 1C6 HipCHO media HipCHO media None Continuous Continuous Perfusion 500L Dyna Drive

31 ExpiCHO 1C6 ExpiCHO SPM + 6 mM L-Glutamine + 2 g/L pluronic EFC 2X spiked Met and Phe, 
Capacitance VCV model None Continuous Continuous Fed Batch 500L Dyna Drive

32 ExpiCHO 1C6 HipCHO media HipCHO media None Continuous Continuous Perfusion 5L Glass

33 ExpiCHO 1C6 HipCHO media HipCHO media None Continuous Continuous Perfusion 5L Glass

34 CHO-K1 Efficient PRO Efficient PRO Feed 2 None Continuous Continuous Fed Batch 500L Dyna Drive

35 ExpiCHO 1C6 Efficient PRO Efficient PRO None Continuous Continuous Perfusion 5L Glass



2. Data management 
The initial data management was performed in the Python 

platform. More than 9000 Raman spectra were collected in 

.spc file format for each bioreactor run. The timestamp for each 

spectrum was extracted from its metadata and matched with 

the timestamp of the reference values for the target analytes. 

To improve the signal-to-noise ratio (SNR), five Raman data 

with timestamps centered around the time of each reference 

were selected and averaged. This resulted in each averaged 

Raman spectrum having a total exposure time of 5 minutes. 

The averaged Raman spectra were used for chemometric 

modeling. The chemometric models were developed using 

Python and Eigenvector SOLO software. The procedure was 

repeated for all target analytes. 

3. Chemometric calibration model development
Before building the chemometric models, the quality of the 

spectra was assessed visually. The bioreactor Raman data 

consists of both Raman scattering and background signal 

from fluorescence, and baseline shift due to Mie scattering. 

Occasionally, the detector is saturated or reaches saturation 

due to a high background signal. This adds non-linear noise 

to Raman spectra. To avoid the inclusion of Raman spectra 

with low SNR in the training data, the Raman spectra were 

plotted and visually inspected. Any spectra with an intensity 

exceeding 50,000 counts in the 800 to 3250 cm-1 spectral 

range were excluded from the training set. The data were then 

preprocessed by removing the baseline using the  

Savitzky-Golay (Sav-Gol) filter, followed by normalization 

either by standard normal variate (SNV) or using area or peak 

intensity of the water band, as shown in Table 2. All the data 

were mean centered before developing the partial least square 

(PLS) regression models. 

The PLS regression models were developed using only the 

selected regions as specified in Table 2. A leave-one-out 

(leave-a-run-out) cross-validation (LOOCV) strategy was used 

for the internal validation of the models. Initially, each model 

was built using different numbers of latent variables (LVs) 

ranging from 1 to 20. The root mean square error of calibration 

and cross-validation (RMSEC and RMSECV) were calculated 

for each model with different numbers of latent variables. 

The PLS model with the optimum number of latent variables 

was selected such that, one, adding more latent variables did 

not significantly improve the RMSECV; and (two) the ratio of 

RMSEC and RMSECV was close to 1.

Analyte Model Type No. of Latent Variables Region Selection cm-1 Preprocessing

Glucose PLS 5 1065-1232;  
1595-1863;  
2704-3078

Sav-Gol filter (1st Derivative; order = 2; Window width = 13)  
+ SNV + Mean Center

Lactate PLS 5 800 - 1750 Sav-Gol filter (1st Derivative; order = 2; Window width = 11)  
+ L-1 Norm (Area = 1 for 1540-1750 cm-1) + Mean Center

Table 2.

Thermo Scientific High-Intensity Perfusion CHO Medium

Gibco™ Efficient-Pro™ Feed 2 Gibco™ Efficient-Pro™ Medium Gibco™ Expi293™ Expression Medium



Chemometric models development
Glucose “Core” Model:
The PLS regression model for glucose was developed using 

the region of the Raman spectra corresponding to specific 

vibrational modes of the glucose, as shown in Figure 3. The 

Raman spectra of glucose in water and in the bioreactor  

after applying the SavGol filter (second derivative, order 

=2, window width =13) are shown in Figures 3A and 3B, 

respectively. The negative peak at ~1125 cm-1 is assigned to 

the stretching vibrational mode of CO and CC and in-plane 

bending of COH bonds (ν (CO), ν (CC), β (COH)) of a glucose 

molecule. Thus, as listed in Table 2 and Figure 4A, the glucose 

model was developed using three spectral regions:  

1065–1232 cm-1, 1595–1863 cm-1, and 2704–3078 cm-1.  

The 1065–1232 cm-1 spectral region includes the characteristic 

Raman glucose peak. The spectral region of 1595–1863 cm-1 

includes the Raman water peak. The concentration of water 

remains unchanged throughout the bioreactor run. Thus, 

the 1595–1863 cm-1 spectral region is used as a reference 

for spectral normalization. During the preprocessing, the 

mathematical operation of SNV mainly utilizes the dominant 

intensity from the spectral region of 1595–1863 cm-1 to 

normalize each spectrum by correcting the path length 

differences. Similarly, the spectral region of 2704–3078 cm-1 

includes a Raman peak assigned to the symmetric and 

antisymmetric stretching vibration modes of CH₂ and  

CH bonds of glucose. Including these regions in the model 

ensured the model’s accuracy and selectivity for glucose 

concentration prediction. 

The glucose PLS model was developed using five latent 

variables for the 0 to 12 g/L concentration range, as shown 

in Figure 4B. The RMSECV did not improve after five latent 

variables, as shown in Figure 4C. Thus, a five-latent-variable 

PLS model was selected. The loadings for these latent 

variables that contain glucose information are shown in  

Figure 4D. The overall model statistics are shown in Table 3. 

Figure 3. Characteristic Raman peaks of glucose at ~1125 cm-1 
in aqueous solution (plot A) and bioreactor (plot B) as second 
derivative (negative peaks) spectra. The spectra are color coded 
by the concentration shown as the vertical bar.

Glucose Core Model Parameters Statistics

Model Range 0-12 g/L

Number of Latent Variables 5

RMSEC 0.43 g/L

RMSECV 0.49 g/L

R² CV 0.94 

CV Bias -0.013 g/L

Table 3.
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Figure 4. Glucose model. Plot A shows the region used to develop the model, plot B is the correlation plot between the measured and 
the prediction during cross validation, plot C shows RMSEC and RMSECV vs number of latent variables, plot D shows loading with 
percent variance captured, plot E shows VIP scores, plot F shows the reduced Q residual vs reduced Hotelling T² plot, and plot G is the 
Crook distance for all training samples.
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Evaluation of the Glucose “Core” Model

i.	 Specificity: The specificity for the glucose core model 
was evaluated by calculating the variable importance in 
projection (VIP) scores. The VIP score plot shows the 
importance of each Raman shift in explaining the response 
variable, glucose concentration. The VIP scores of the 
glucose core model are shown in Figure 4E. The red dotted 
horizontal line represents the commonly used significance 
threshold (VIP score =1). Any Raman shift with a score 
higher than 1 is considered important for the model. As 
shown in the VIP score plot for the glucose model, the 
spectral region ~1125 cm-1 has significantly higher scores 
than those from other regions. This spectral region is 
specific to the vibrational mode of glucose, as explained 
above in Figure 3. Thus, the VIP score plot is one of the 
mathematical assessments that indicate the model’s 
specificity for glucose. In this study, we preemptively 
developed the model by selecting a specific region to 
improve model specificity. 

ii.	 Accuracy/precision: The glucose core model was 
developed with a glucose concentration of 0 to 12 g/L 
in the training dataset. Its accuracy and precision were 
evaluated using RMSECV and CV bias. As listed in Table 
3, the low RMSECV of 0.49 g/L and low CV bias of -0.013 
g/L demonstrate the model’s high accuracy for the 
concentration range of 0 to 12 g/L. The RMSECV can be 
treated as the normalized standard deviation across the 
concentration range.  

The total measurement error is the square root of the 
sum of the squares of bias error and precision error.⁸ 
Using RMSCV as total error and CV bias as bias error, the 
precision error was calculated to be 0.48 g/L. The RMSECV 
of 0.49 g/L and the precision of 0.48 g/L also indicate that 
the model is statistically more accurate and reliable above 
the glucose concentration of 1.5 g/L (3 * RMSECV). It can 
monitor or control glucose concentration in the process 
with a tolerance limit of 0.5 g/L.

iii.	 Linearity: The R² CV for the glucose core model is 0.94, 
demonstrating the linearity of spectral change across the 
range of 0 to 12 g/L.

iv.	 Q vs T² analysis and recommendations: The Q residual 
and Hotelling T² are other model evaluation criteria. The 
Q residual is the lack-of-fit statistic that measures the 
residual after projecting the data into the model space. It 
measures how well each sample conforms with the model. 
Hotelling T² measures the sample variation within the model 
by estimating how far the sample is from the center of 
distribution of the model. The Q residual and Hotelling T² 
statistics are sensitive to the total number of variables in 
the data, the number of latent variables, and the particular 
preprocessing used for a model. In contrast, normalized 
statistics called reduced Q residual and reduced Hotelling 
T² are calculated by dividing the Q residual and Hotelling T² 
with the corresponding confidence interval. The distribution 
of the reduced Q residual and reduced Hotelling T², with 
a 95% confidence interval for the core glucose model, is 
shown in Figure 4F. The majority of the data resides within 
the boundaries limit (dotted blue line) of reduced Q residual 
< 1 and reduced Hotelling T² < 1. Few data points are out 
of the 95% confidence boundaries, which is expected for a 
model developed with such wide varieties of training data 
(different cell lines, media, and operational modes); the 
distribution of variance is not equivalence. 

When the model is applied to new processes or 
instruments, the reduced Q residual and reduced Hotelling 
T² distribution plot should be used as an assessment 
criterion. The prediction from model can only be trusted 
with high confidence if the test samples fall with the model 
space. Under the scenario where the test samples have 
high values of reduced Q residual and reduced Hotelling T², 
it is recommended that the predictions be validated using 
orthogonal reference techniques. It is also recommended 
that the limits for setting the boundaries of reduced Q 
residual and reduced Hotelling T² should be determined 
by the user only after applying the model to the statistically 
significant number of process runs.

v.	 Outlier analysis: To calculate if any of the data points are 
outliers or are highly influential in the model, especially 
the ones that lie out of 95% confidence boundaries in the 
reduced Q residual and reduced Hotelling T² plot, the 
Cook’s distance was calculated. This measures the change 
in the regression estimates when a particular observation 
is removed from the dataset. It quantifies the effect of that 
observation on the overall model fit. A high Cook’s distance 
for a specific observation indicates that its removal from the 
dataset would substantially impact the estimated regression 
coefficients and, therefore, might be an outlier or influential 
data. As shown in Figure 4G, all data have low Cook’s 
distance, demonstrating no obvious outliers or influential 
data in the training set.



Lactate “Core” Model
The lactate core model was developed using the same  

strategy described above for the glucose core model.  

Figure 5 shows the characteristic Raman peak for lactate at 

~ 860 cm-1 in water and in the bioreactor after applying the 

SavGol filter (second derivative, order =2, window width=13).  

To provide specificity toward lactate, the model was  

developed using a single spectral region (800 to 1750 cm-1)  

that includes the characteristic Raman peak for lactate and 

water band for normalization, as shown in Figure 6A. 

The lactate model was developed using five latent variables 

(Figure 6B). The choice of five latent variables was based on  

the result of the predicted residual error sum of squares 

(PRESS) against the number of latent variables, as shown in 

Figure 6C. There was no significant improvement in  

RMSECV after five latent variables, so the five latent variables 

PLS model was selected as the optimal one. The loadings  

for the model are shown in Figure 6D. The model statistics  

are summarized in Table 4. 

Figure 5. Characteristic Raman peaks of lactate at ~860 cm-1 
in aqueous solution (plot A) and bioreactor (plot B) as second 
derivative (negative peaks) spectra. The spectra are color-coded 
by the concentration shown as the vertical bar.

Lactate Core Model Parameters Statistics

Model Range 0-12 g/L

Number of Latent Variables 5

RMSEC 0.23 g/L

RMSECV 0.31 g/L

R² CV 0.92 

CV Bias -0.0174 g/L

Table 4.
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Evaluation of Lactate “Core” Model

i.	 Specificity: The VIP score plot (Figure 6E) demonstrates 
that the region from ~ 820 to 880 cm-1 is important in the 
lactate model. This region is associated with the stretching 
vibrational mode of the C-COO- bond of lactate, as shown 
in Figure 5. Thus, the VIP score plot demonstrates the 
model specificity for lactate. 

ii.	 Accuracy/precision: As explained above for the glucose 
core model, the RMSECV of 0.31 g/L, CV bias of -0.0174 
g/L, and precision error of 0.31 g/L for the concentration 
range of 0 to 12 g/L demonstrate that the model’s accuracy 
and precision are within the acceptable tolerance for typical 
bioreactor process monitoring.

iii.	 Linearity: The linearity of the lactate core model is 
demonstrated by CV R² of ~0.94 for the concentration 
range of 0 to 12 g/L. Considering the diverse bioprocess 
conditions in bioreactors where training sets were collected, 
the CV R² of ~0.94 represents the high correlation between 
spectral information and measured concentration. Note that 
this metric from lactate is not as good as that from glucose, 
and this is because the “net analyte signal” of lactate is less 
than that of glucose.

iv.	 Q vs. T² analysis and recommendations: The distribution 
of the training data in the Q vs. T² biplot related to 95% 
confidence boundaries is shown in Figure 6F. The 95% 
confidence boundaries of raw Q and T² values from 
the training data set are used in the denominators to 
normalize reduced Q residual and reduced Hotelling T² 
to 1, respectively. The dotted blue line represents these 
boundaries. The predictions from the model are trusted 
with high confidence if the test samples fall within the 95% 
confidence boundaries. When a test sample generates 
reduced Q residual or reduced Hotelling T² significantly 
higher than 1, an additional reference test is recommended 
to validate the prediction.

v.	 Outlier analysis: The low Cook’s distance for the training 
data indicates that there was no outlier in the training data, 
as shown in Figure 6G. 
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Figure 6. Lactate model. Plot A shows the region used to develop the model, plot B is the correlation plot between the measured and 
the prediction during cross validation, plot C shows RMSEC and RMSECV vs. number of latent variables, plot D shows loading with 
percent variance captured, plot E shows VIP scores, plot F shows the reduced Q residual vs. reduced Hotelling T² plot, and plot G is 
the Crook distance for all training samples. 
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Performance of Glucose and Lactate “Core” Model
The performance of glucose and lactate core models 

described in this note was tested on five different cell lines/

media, different scales of bioreactors, and also for the 

automated feedback control.⁹,¹⁰ The average root mean 

square of prediction (RMSEP) for glucose was ~ 0.5 g/L, 

while the average RMSEP for lactate was ~ 0.2 g/L. The 

low RMSEP for CHO and HEK cell lines in different cell 

media demonstrates the models’ accuracy, reliability, and 

transferability across different processes and scales. 

Conclusion
The accurate, reliable, and transferable glucose and lactate 

Raman “core” models were developed for bioreactor 

monitoring and control. By utilizing these models, users 

can save valuable time, costs, and resources that would 

otherwise be required for developing chemometric models. 

With the availability of these models, users can immediately 

initiate automated glucose feeding for their bioreactor while 

also taking advantage of the additional benefits offered 

by Raman as an in-line Process Analytical Technology 

(PAT) solution. This includes enhancing and regulating the 

process, minimizing batch-to-batch variability, and ensuring 

consistent product quality and quantity. 
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