

Breaking it Down

Polymer Deformulation Studies using FT-IR Coupled to TGA

The world leader in serving science

Polymers Supply Chain

Molecular Spectroscopy in the Polymer Manufacturing Process

Overview

Deformulation

- What is it?
- Why do it?
- Common materials

FT-IR as a deformulation tool

• TGA coupled with FT-IR

Deformulation

- Failure Analysis
 - Known material gone wrong
- Reverse Engineering
 - Unknown material composition
- Polymers
 - Plastics
 - Fillers, formulation
 - Biopolymers
 - Rubber
 - Carbon Black: O-Rings, Tires
- Epoxies, Resins, Adhesives
- Entrained solvents, breakdown products
- Fabrics, Paper products

The Nicolet iS50 FT-IR

TGA-IR: The Basics

Desired Information

- Quantitative: How much material is coming off?
 - T "G" A Gravimetric Analysis = quant
- Qualitative: What came off?
 - FT-IR Vibrational information = qual
- Process: Similar yet different, why?
 - Profiles of materials versus time (temperature)
- It takes all three to get formulation

TGA-FTIR: Experiment

Simple Situation – Calcium Oxalate Three weight-loss peaks • H₂O ; CO + CO₂ ; CO₂ Temperature (°C) vs. Time (min) Intensity 500 -40 - Weight loss (mg) vs. Time (min) Intensity 20 Derivative weight loss (mg) vs. Time (min) Intensity 2 0 Gram-Schmidt 0.2 Intensity 5 10 15 20 25 30 35 40 45 50 / 55 60 Time (minutes) 0.50 Linked spectrum at 51.515 min. 0.40 • H₂O Absorbance 0.30 0.20 0.10 • 0.00 3500 3000 2500 2000 1500 1000 500 Wavenumbers (cm-1) X-51 522 Y-797 485 Spectrum at 51 52

Classic Root Cause Analysis

TGA Current State

Complete Analysis: Mercury TGA

Mercury TGA

Fast Answers with Search Results, Component Profile Information and Match information all in one window!

How Many Components?

Full Deformulation: 7 Components

Structural Foam

TGA-IR Analysis of Museum Materials

- Museum needs to display artifacts
- Must balance preservation with aesthetics
- What if display material slowly outgases?
 - Low level concentrations
 - Encased material concentrates gases
 - Long term exposure possible

Mummy Case of Paankhenamun

Cartonnage (gum, linen, and papyrus) with gold leaf, Third Intermediate Period, Dynasty 22, c. 945-715 B.C.; h. 170.2 cm; William M. Willner Fund, 1910.238.

Art Institute of Chicago

TGA-IR Data of Display Materials: Velvet

Ammonia and acetic acid detected

Mercury TGA Also Works for Kinetics!

Reaction of urethane

Conclusions - Deformulation using FT-IR & TGA

- TGA coupled to FT-IR advances capabilities to break materials down
- Mercury TGA software simplifies the analysis of complex mixtures

Please Contact Us for More Information

View our website:

www.thermoscientific.com/polymers

or

Please feel free to email me: mike.garry@thermofisher.com

