

- 1. What is TLP
- 2. How TLP works
- 3. TLP measurement
- 4. TLP variants
- 5. Interpreting TLP data
- 6. TLP Precision
- 7. VF-TLP
- 8. Q&A

- Transmission Line Pulse
 - Introduced as a possible method to emulate energy in HBM
 - Determined that for a given peak current, a TLP pulse of 100ns carries the same energy as HBM
 - Same energy is produced by different voltages:
 - 50V TLP = 1A
 - 1500V HBM = 1A

Background

- Characterization of protection structures is important
 - Predict behavior for real world events
- Important parameters:
 - Snapback voltage
 - Turn on time
 - R_{ON} resistance
 - Failure point
- Must determine parameters with techniques similar to ESD
- TLP is an excellent solution
 - Controlled impedance makes measurements easier
 - Low duty cycle prevents heating

What is TLP

Section 1: What is TLP

- What makes TLP different than ESD?
 - ESD tests simulate real world events
 - HBM, MM, IEC, CDM
 - TLP does not simulate any real-world event
 - ESD tests record failure level
 - "Qualification"
 - TLP tests record failure level and device behavior
 - "Characterization"

- What is Device Characterization?
 - Describes the resistance of a device for a given stimulus
 - Resistance = Voltage / Current
 - Conventionally performed by increasing amplitude until failure

• Like Curve Tracing

Section 1: Device Characterization

- How is **TLP** *different* than Curve Tracing?
 - Curve Tracing is DC

• TLP is a short pulse

- Shorter pulse
 - Reduced duty cycle, less heating
- Controlled Impedance
 - Allows device behavior to be observed (more on this later)

• How is **TLP** the same as Curve Tracing?

- Measure resistance of device with increasing voltage
 - Less heat means higher voltage before failure

Section 1: Device Characterization

- What can I learn from Device Characterization with **TLP**?
 - Turn-on time
 - Snapback voltage

• Performance changes with rise time

Section 1: TLP Waveforms

- What does a TLP waveform look like?
 - Square pulse

 Unlike ESD waveforms, TLP does not mimic any real world event

HBM Waveform

Section 1: TLP Waveforms

TLP Waveform What variations are there for TLP waveforms Voltage Pulse Width • 100ns **Pulse Width** • 30ns – 500ns 20 40 60 80 120 0 100 -20 • VF-TLP: 1ns – 10ns Time (ns) **TLP Waveform TLP Waveform** Rise Time Voltage • 0.2ns – 10ns Voltage **Rise Time Rise Time** 20 40 60 80 80 -20 100 120 -20 0 20 40 60 100 120 0 Time (ns) Time (ns)

Section 1: TLP Waveforms

- How do these variations affect the TLP test?
 - Pulse Width
 - Energy under the curve

- Rise Time
 - Device reaction

ThermoFisher S C I E N T I F I C

Section 1: Devices for TLP Testing

- What kinds of packages can be tested?
 - Package Level

• Wafer Level

How TLP Works

How TLP pulses are generated

- How is a TLP waveform generated?
 - Transmission Line connected to power supply
 - Called Charge Line
 - Length proportional to pulse width

• Power supply charges the cable

- How is a TLP waveform generated?
 - **DUT** lies at end of another transmission line

- Switch closes
 - Charge exits Charge Line, propagates towards DUT

- How is a TLP waveform generated?
 - Square waveform
 - Charge Line behaves as a storage device

- What happens when the waveform hits the DUT?
 - Recap: TLP is a short-duration pulse in a controlled-impedance environment
 - Behaves like an RF signal
 - RF signal behavior
 - Propagates until impedance changes

Section 2: How TLP Works

- How is resistance measured with a TLP pulse?
 - Square pulse, perceive it as a short-duration Curve Trace

Voltage and Current probes measure the DUT

How is resistance measured with a TLP pulse?

- Plateau of waveforms are averaged
 - Device allowed to settle into "quasi-static" state

Voltage Probe Waveform

Current Probe Waveform

• Why use both a Voltage probe and a Current probe?

• It is possible to calculate DUT resistance with only 1 probe

•
$$V_{DUT} = V_{Pulse} - (I_{DUT} * Z_{TLP})$$

- $I_{DUT} = (V_{Pulse} V_{DUT}) / Z_{TLP}$
- Not desirable because extremes are noisy

Sequential TLP pulses produces an I/V Curve

Section 2: How TLP Works

- How is the Pulse Width changed?
 - Length of cable

- How is the **Rise Time** changed?
 - · Low-pass filter added

TLP Measurement

· How devices are measured

- Measurement Goals
 - Capture Voltage at the DUT
 - Capture Current through the DUT

Equipment to capture V and I

Equipment to deliver TLP pulse to DUT

Package Level

- 1. DUT in socket
- 2. TLP Pulse delivery cable
- 3. Grounded pin

Wafer Level

- 1. DUT (on wafer)
- 2. TLP Pulse delivery cable
- 3. TLP Pulse delivery probe
- 4. Ground Probe
- 5. Ground Braid

- Ideally, V and I probes are directly on DUT
 - Direct placement not possible

• Although probes are not at DUT, measurements are possible

- Controlled impedance
- Waveform observable any place along path
- Time Domain Reflection (TDR)

How are measurements accomplished away from DUT?

- Incident and Reflected waveforms
- Adding the waveforms reproduces DUT measurement
- Incident and Reflected waveforms are recorded separately (TDR-S)

Reflected Waveform Polarity	DUT Ω > Z _{TLP} (Example: Open Circuit)	DUT Ω < Z _{TLP} (Example: Short Circuit)	DUT $\Omega = Z_{TLP}$ (Example: 50 Ω Resistor)
Voltage Waveform	Positive Reflection	Negative Reflection	No Reflection
Current Waveform	Negative Reflection	Positive Reflection	No Reflection

• TDR-S performs waveform addition with software

Waveform addition can also be done in the TLP circuit

Overlapping waveforms

- Incident and Reflected overlap, add together
- Overlapped waveform plateau reproduces DUT waveform

TLP Variants

Section 4: Importance of Impedance

Why vary the impedance?

- Low Impedance
 - More current flow for a given voltage
 - More voltage amplitude
- High Impedance
 - Less current flow for a given voltage
 - Less voltage amplitude

- TLP circuit characteristics up to this point
 - 50 Ω Impedance
 - One stress-pin
 - One ground-pin

- Time Domain Reflection (TDR)
 - TDR-O
 - TDR-S

- n (TDR)
- Variations alter the system impedance and grounding style

Section 4: TLP Variants

- Time Domain Transmission (TDT)
 - 25Ω system impedance

Section 4: TLP Variants

- Time Domain Reflection and Transmission (TDR-T)
 - DUT in series with pulse transmission path
 - 100Ω Impedance

- High-Z Time Domain Reflection and Transmission (TDR-T)
 - DUT in series with pulse transmission path
 - 500Ω, 1kΩ Impedance

Interpreting TLP Data

Voltage

 What information do TLP I/V Curves provide?

What information do TLP
waveforms provide

ThermoFisher SCIENTIFIC

- Device: Resistor
 - Ω is constant no matter what voltage is applied

- Device: Zener Diode
 - Turn-on Voltage
 - Breakdown Voltage

 $V_{DUT}(V)$

- Device: Snapback Protection Structure
- 1. Low Voltage TLP Pulses
 - Open Circuit
- 2. Snapback Threshold
 - Begins conducting current
- 3. On Resistance
- 4. Failure Level
 - Peak Current

Thermo Fisher

Section 5: Interpreting TLP Data

Section 5: Interpreting TLP Data

• How is failure detected?

Section 5: Interpreting TLP Data

• How is failure detected?

- Precise amount of energy under curve
- Controlled impedance circuit
- Conservation of energy
- Pulsed = V_{DUT} + (I_{DUT} * Z_{TLP})
- For a given TLP Amplitude, the measured V and I will always reside on that Amplitude's Load Line

• Open Circuit:

V _{Pulse}	V _{DUT}	I _{DUT}
50	50	0
100	100	0
150	150	0
200	200	0
250	250	0

Short Circuit:

V _{Pulse}	V_{DUT}	I _{DUT}
50	0	1
100	0	2
150	0	3
200	0	4
250	0	5

50Ω Circuit:

V _{Pulse}	V _{DUT}	I _{DUT}
50	25	0.5
100	50	1
150	75	1.5
200	100	2
250	125	2.5

Snapback Device:

V _{Pulse}	V _{DUT}	I _{DUT}
50	50	0
100	100	0
150	150	0
200	60	2.8
250	70	3.6

Section 5: Load Lines and System Impedance

- How does system impedance affect the Load Line?
 - Low Impedance
 - More current flow for a given voltage
 - High Impedance
 - Less current flow for a given voltage
 - $V_{Pulse} = V_{DUT} + (I_{DUT} * Z_{TLP})$
 - $I_{DUT} = (V_{Pulse} V_{DUT}) / Z_{TLP}$

Section 5: System Impedance

- Why would I want to change the system impedance?
 - Snapback device recap:
 - Voltage triggered
 - Fails by peak current
 - What if Snapback device has high trigger voltage, low peak current?
 - 250V Trigger Voltage
 - 5A peak current

Section 5: System Impedance

Characteristics of High Impedance

- Longer settling time
 - Time Constant = Z_{TLP} * C_{DUT}

- Unstable turn-on region
 - Enough Voltage to turn-on
 - Not enough Current to remain on

Section 5: Quasi-Static Region

• What defines the "quasi-static" region?

• After transient response has settled

• What if the device never settles?

55

Section 5: Transient Region

- Does the transient response tell me anything?
 - Turn-on time

• Capacitance

TLP Accuracy

- Understand limitations
- Optimize measurements

- Misconception: TLP is as precise as DC curve tracing
- What affects the accuracy of **TLP** measurements?
 - Short duration means smaller sample size
 - Measurement instrument limitations
 - Parasitics and noise
 - Contact resistance

• How are these limitations addressed?

Oscilloscope: Bandwidth

6 GHz, 20 GS

Oscilloscope: Signal digitization optimization

• 8 bits of resolution = 256 possible levels

Oscilloscope: Signal digitization optimization

Oscilloscope: Signal digitization optimization

250 150 50 -50 -150 -250 -20 30 80 130 180 230Time (ns)

TDR-S: No Optimization Possible

Overlapped waveform advantageous for best resolution

Section 6: TLP Accuracy – How Are Limitations Addressed?

- Parasitics:
 - Factor out from DUT measurement

Thermo Fisher s c I E N T I F I C

Section 6: TLP Accuracy – How Are Limitations Addressed?

- Noise:
 - Multiple pulses

Section 6: TLP Accuracy – How Are Limitations Addressed?

- Contact Resistance
 - Changes on each touchdown

- 4-point TLP (Kelvin)
 - Contact resistance removed

VF-TLP

- Similarities and differences
- Additional requirements

Section 7: VF-TLP

- What makes VF-TLP different?
 - Short pulse width
 - 1ns 10ns

- Fast rise time
 - 100ps 200ps

• Transient response emphasized

• Mimics CDM event

Section 7: VF-TLP

Section 7: VF-TLP

- Additional requirements for VF-TLP?
 - More sensitive to parasitics
 - Wafer-level only
 - RF-rated probes recommended

Package Level

Coax Wafer Probe - 4 GHz

RF Wafer Probe - 40 GHz

Additional Topics

- How do I power up my device during TLP?
 - DC BIAS supplies can be added

- Does TLP correlate to HBM?
- Does VF-TLP correlate to CDM?
- Why use TLP instead of a TDR machine, or solid state pulse generator?
- TLP Circuit is a closed system, will reflections continue indefinitely?

