

Optimum Settings for EDS Mapping

Patrick Camus, PhD

December 2012

Why Optimum Settings are Important

- Most complete sample description in shortest analyst time
 - SEM conditions and EDS parameters determine spatial resolution, spectral resolution, and statistics level.
 - Acquisition time is important but only a small portion.
 Analysis time may take longer.
 - Confidence in analyst interpretation is very important.

Conclusions

- Optimum settings for EDS mapping are very important.
- "Optimum" is subjective due to the number of variations that are possible.
- The optimum settings for one experiment will be different than those for another experiment.

Spectral Imaging Mapping

- Electron image with x-ray data cube histgram
 - Full x-ray spectrum at each scan location (position in map)

Spectral Imaging Histogram Processing

- Extractions
 - Energy axis provide elemental ROI maps
 - Image plane provide spectra of those regions
 - These methods require a huge amount of analyst time and experience for correct and complete interpretation.

X-ray Hardware Considerations

- High detector solid-angle increases input count rate
 - $\Omega \sim A / STD^2$
 - Short sample-to-detector (STD) distance
 - Large area (A) detectors
 - Be wary of housing diameter and needed STD
 - Multiple detectors
- High output x-ray electronics needed with high input rates
 - Output rate = f(input count rate, electronics deadtime)
 - An input rate of 100kcps at 121eV resolution and 90% deadtime is only <10kcps output rate!
 - An input rate of 100kcps at 135eV resolution and 45% deadtime provides 55kcps output rate
 - Output or storage rate is most important for analyst.

Acquisition Considerations

- Spatial resolution
 - Am I collecting x-rays from only my feature?
- Spectral resolution
 - Are peaks overlapped or separate?
- Statistics level
 - How confident am I in the measurements?
- Mapping pixels
 - How many are needed?

Electron Beam & Sample Interaction

- Interaction Volume Size
 - Determined by two factors:
 - Density of the sample.
 Average atomic number.
 (Z)
 - Energy of the electron beam.
 Accelerating voltage.
 (KV)

Spatial Resolution Considerations

 Interaction volume + feature size = beam energy + sample density + pixel size

	Close pixels	Wide Pixels
Small Volume vs Feature		
Large Volume vs Feature		

- Select magnification to see smallest important feature.
- Select pixel size/spacing to optimally analyze that feature.
- Select beam energy to analyze only feature.

Spatial Resolution Depth

 The interaction volume may generate x-rays from unseen features.

- Extremely important when different density materials (interaction volumes) in the same sample.
- Complication for settings selection and interpretation.

Beam Voltage Considerations

- Select to collect x-rays from all important elemental families.
 - Overvoltage should be maintained > ~2x for all of the important x-ray lines for optimal x-ray intensity.
 - High beam voltage (typically) accesses all x-ray lines.
 - Low beam voltage restricts available x-ray lines.
 - Peak overlaps become more common.

 Evaluate how elemental x-ray families help and hinder method of interpretation.

Spectral Resolution Considerations

- High detector specified resolution typically preferred
 - Indication of quality of x-ray detection system
 - Only useful if fully separated peaks to baseline
 - Very important for trace elements
 - Very important if visual interpretation is primary analysis method
 - Advantageous if does not compromise speed
 - Peak overlaps and composition quantification require software separation
 - Spectral resolution is of minor consequence
 - Analyst confidence in Peak ID and Quant routines
- Low detector operational resolution typically accepted
 - Higher collection rates, less acquisition time
 - Software performs most analyses independent of resolution

Spectral Resolution Techniques

WDS

- Very high resolution
- Single element only
- Useful for single peak separation
- Advantageous for trace elements

EDS

- Higher total x-ray storage rate
- Relatively lower resolution
 - Electronics setting balances resolution vs. output rate
- Advantageous for most materials

Spectral Resolution Considerations – 2

- Method of analysis determines level of importance
 - Visual interpretation = very important
 - Software interpretation = not important

Spectral resolution is almost unimportant for K-lines. Optimize for interaction volume or storage rate.

<36 eV resolution at Mo-L (<57 eV at Mn-K) required. EDS must rely on software.

 Judge the importance of resolution on method of interpretation.

Statistics Level Considerations

- Minimum peak contrast for analytical method
 - Minimum detection should equal enough counts to NOT impact measurement uncertainty
 - Peak/background in spectrum
 - Feature contrast in map (composition contrast in features)
 - Poisson statistics: $\sigma = SQRT(N)$

Statistics Level Considerations – 2

- Minimum detection = acquisition time * output (storage) rate
- Output rate = f(beam current, sample density, electronics speed
 - Beam current is major user setting
 - Affects spot size on sample
 - Affects x-ray generation rate inside sample
 - Same time using different rates = different statistics
 - Same rate using different time = different statistics
 - Termination on stats gives flexible time (count threshold / storage rate)
- Time is a poor termination criterion for acquisitions; statistical termination is much more powerful, consistent, and useful.

Statistics Level Considerations – Termination

- Statistics threshold depends on analysis technique of data
 - Metric: total x-ray counts per pixel spectrum (cpp)
 - Elemental mapping requires minimum of 200 cpp
 - Quantitative mapping requires minimum of 500 cpp
 - Statistical analyses require minimum of 50 cpp
- Total map acquisition time = pixels * pixel dwell time
 - Dwell time = statistics threshold / storage rate
 - If beam current or electronics setting changes, the statistical quality of the acquisition remains the same!

Statistics Level Considerations – Mapping Size

- 512 x 384 pixels @ 10kcps output for 100 cpp: < 2000 sec
 - Best-case traditional mapping using statistical analyses
- 512 x 384 pixels @ 100kcps output for 100 cpp: < 200 sec
 - Modern mapping using statistical analyses
- 1024 x 768 pixels @ 100kcps output for 100cpp: < 800 sec
 - High-quality modern mapping using statistical analyses
- 1024 x 768 pixels @ 100kcps output for 500cpp: < 4000 sec
 - High-quality modern mapping using elemental quant maps
- 4k x 3k pixels @ 100kcps output for 500cpp: < 63000 sec
 - < 17 hours
 - Highest-specification modern mapping using elemental quant maps

Map Size Optimizing

- Termination of 500 cpp at 100kcps output requires 5 ms pixel dwell time
- Analysis width of 1 mm requires 100x
- Beam voltage of 20 kV provides spatial resolution of 2 μm
- 512 pixels gives max info content in ~ 1000 sec
 or
 1024 pixels gives slight spatial oversampling in ~ 4000 sec
- More pixels provide no more real information for much longer acquisition time
- Beam voltage of 5 kV provides spatial resolution of 0.5 μm
- 2k pixels gives maximum info content in ~ 16000 sec or
 4k pixels gives slight spatial oversampling in ~ 64000 sec
- Interpretation of large maps by zoom-and-pan
- Select termination, output rate, beam voltage, mag and pixels wisely.

Desired Results for Report

- Analysis of raw x-ray data into interpretable form
 - Analysts typically think in terms of alloy/mineral/compounds, even if only single element.
- Elemental Maps
 - Elemental x-ray line spatial distributions
 - Traditional report format because easiest computational method, not best interpretable form.
- Phase Maps
 - Alloy/mineral/compound distributions
 - Modern report format because best interpretable form.

Elemental Map Results for Report

- High experience level needed for complete list of elements
 - Peak overlap detection, small peak amplitude (trace) detection
 - Very high level of statistics required
- Gross counts maps
 - Simple display
 - Simple processing
 - Potential misinterpretation of intensity and phase distribution
- Quantitative elemental maps
 - High contrast display
 - Full-spectral quantification processing, correct elemental distribution
 - Potential misinterpretation of phase distribution

Phase Map Results for Report

- Alloy/mineral/compound distributions and spectra
 - The preferred interpretation for customers
- Experience level requirements and interpretation quality depends on raw data format and phase creation method.
 - Phase determination by elemental maps.
 - All of the restrictions and limitations of elemental maps apply.
 - Time prohibitive when more than ~5 elements
 - Phase determination by statistical methods
 - No user-bias on data selection (whole SI data set).
 - Users of all experience levels produce same results.
 - Lowest level of statistics needed for correct interpretation.
 - Peak deconvoluting routine.
 - Finds ALL compositionally unique features
 - Fastest analysis time.

Example Reports

- Elemental Maps
- Quantitative elemental maps
- Phases using elemental maps
- Phases using statistical methods

Taylor Standard Elements

Turbine Raw Count Maps at 7kV

Turbine Quantitative Maps at 7kV

Overlap of Si-K, Ta-M and W-M

Heavy peak overlap that needs < 30eV resolution

Element validation is experience driven

Elemental Maps of Si-Ta-W-Cu

Gross Count Maps

Net Count Maps

Turbine Spectral Imaging Maps

Turbine Statistical Phase Analysis

Turbine Statistical Phase Composite

Unexpected red phase found!

Overlap of Mo-L and S-K

Heavy peak overlap that needs < 20eV resolution

Element validation is experience driven

Traditional Elemental Maps

- Elemental gross-count maps
 - Excessive spectral background
 - Peak overlaps
 - Proper element selection

Results are interesting but confusing

Quantitative Element Maps

- Apply full range of spectrum quantitative methods
 - Background subtraction
 - Peak deconvolution
 - Matrix correction

- Significant information content
- Correct composition intensity
- Spatial overlap complications

Quantitative Map Summary

- Spatial overlap complications:
 - Unknown multi-element compound phases

Phase Analysis using Elemental Maps

- Input of user-selected maps
- Analyzes for pixel overlaps
 - Finds multi-element compounds
- Provides maps and spectra of compounds

Phase Analysis Summary

Clearly delineated and identifiable phases

Statistical Phase Analysis

- Statistical analysis of whole data cube
 - No user bias on input to calculation
- Compares every pixel spectrum for similarities
- Provides unique component maps and spectra
- Spectral peak deconvoluting

Statistical Phase Summary

 Reduces huge data cube to a manageable and interpretable amount of information

Analysis of Superalloy

Superalloy Elemental Maps

Superalloy Statistical Phase Analysis

Superalloy Particle Spatial Deconvolution

Superalloy Particle Spectral Deconvolution

Superalloy Particle Spectral Deconvolution – 2

Superalloy Quantitative Elemental Mapping

Stony Meteorite Elemental Maps

Stony Meteorite Statistical Phase Maps

All phases found

Stony Meteorite Statistical Phase Map Summary

Phase distributions overlaid on the electron image

Stony Meteorite Statistical Phase Map Details - 1

SiAlFeNi - O phase				
X-ray	Atomic			
Counts	percent			
296282	61.4			
17069	1.2			
177934	8.1			
393884	15.4			
4008	0.1			
188800	7.5			
115434	6.3			
	X-ray Counts 296282 17069 177934 393884 4008 188800			

SiFeNi - O phase					
Element	X-ray	Atomic			
	Counts	percent			
O K	103582	62.7			
Mg K	11959	3.8			
Al K	5432	1.1			
Si K	86081	11.9			
Fe K	78001	10.2			
Ni K	56059	10.3			

Spatial distribution, spectrum and quantification for each phase

Stony Meteorite Statistical Phase Map Details – 2

2 Unexpected phases with very low area coverage

FeS - O phase				
Element	X-ray	Atomic		
	Counts	percent		
OK	3412	52.5		
Si K	473	0.7		
S K	9449	16.0		
Fe K	10955_	30.8		

Note the low counts < 0.1% of the total sample counts

	. ·
•	
	 500 μm

FeCr - O phase				
Element	X-ray	Atomic		
	Counts	percent		
OK	1963	59.5		
Mg K	91	1.7		
Al K	172	2.1		
Cr K	2386	18.4		
Fe K	1744	18.3		

- All users get this answer!
- Statistical methods provide the highest confidence of fully understanding your sample.

Conclusions

- Highest quality report in the shortest analyst time
 - Acquisition and analysis time
- Operational settings depend upon sample
- "Optimal" settings are a balance of capabilities
- Terminate by statistics
- Report include phase analysis by statistical method

THANK YOU

QUESTIONS?