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INTRODUCTION - Cathode collector foil: Al

Lithium-ion batteries (LIBs) are widely used in portable electronics, electric vehicles, and grid storage due to their high
energy density and long cycle life. LIBs consist of a graphite-coated copper foil, which acts as the anode, an aluminum
foil coated with active materials as the cathode, and a polymer film that separates both electrodes and only allows
lithium Ions to pass. A liquid electrolyte in which lithium salt is dissolved completes the setup:

— Cathode: Li,Co,Mn

— Separator: PE, PP

Anode collector foil: Cu — —— Anode: Graphite

The lithium-ion battery manufacturing involves many steps, including preparing and coating anode and cathode

slurries. Proper mixing of the individual components and a homogenous coating process are essential for Mixing Coaling & N - jendering DRING
achieving batteries with a high capacity and many available charging cycles.
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SLURRY MANUFACTURING

Continuous twin-screw compounding for manufacturing electrode slurries Is a ————
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» Solvents drying and recycling is highly energy consumptive MARS 60 Rheometer SIUITies
« Strong shear forces acting onto the material allow to reduce the solvent content
of electrode pastes Rheological testing methods
Scalability - | | Rheological measurements were performed using a Thermo Scientific™
» Good scalability from lab to production geometry with sandblasted surfaces and a Peltier temperature control module
Feeding iquid feed (solvents, (Fig.3). The meafu.rlng gap was set to 0.5 mm and the following tests were
(single or multiple ports) binders) performed at 20 °C:
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Cathode slurries were prepared from the following | I A

raw ingredients:

« Solvent: water

* Active ingredient: LIFePO4 (LFP)

« Conductive agent: carbon black (CB)
* Binder: CMC/SBR
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Slurries were prepared using a | 0 T e

Thermo Scientific™ HAAKE™ Energy 11 Twin Screw Extruder (Fig.2)

with a two-stage mixing screw at room temperature. Solids were dosed into the | i
extruder with a gravimetric twin-screw feeder and water was dosed with a |
peristaltic liquid pump. The solid content was set to 50% with a total mass flow
of 800 g/h. Samples were collected at 120 rpm or 1000 rpm screw speed. A

10°°

no = 3,599e+05 Pas

yin%
Jin 1/Pa

Solids co:ntent 43 %, E:SOO rpm
. . —~J =1(1)
_ | Solids content 50 %, 1000 rpm
S 0% S e ) = A1)

i 5 5 Solids content 50 %, 120 rpm
- J = {(1)

|7 =167.8Pa

sample with 43% solid content mixed at varying screw speed was also iy T —
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Fig.3 Thermo Scientific™ Fig.4 SEM images of cathode _ e
Phenom™ G2 Desktop SEM slurries Fig.7 Results of rheological characterization

CONCLUSIONS

 All slurries showed viscoelastic properties and yielding behavior.
RHEOLOGICAL ANALYSIS OF BATTERY SLURRIES * Viscosity, firmness and network (gel) character were Iincreasing with
Rotational and oscillatory rheometry enables the quantification of the increasing solids content.
viscoelastic properties needed to  Higher shear forces during slurry compounding reduced final shear

- verify a proper mixing and a homogeneous distribution of active components viscosity, firmness and gel character of the cathode slurry.

within the electrode slurries. Thermo FiSher

* predict storage behavior and stability.
SCIENTIFIC

* understand behavior during the coating process
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