Ensaio DRI® de álcool etílico

IVD Para utilização em diagnóstico in vitro

Rx Only

REF 10016397 (kit de 3 x 18 ml) 0037 (kit de 100 ml) 0038 (kit de 500 ml)

Utilização prevista

O Ensaio DRÍ® de álcool etílico destina-se à determinação quantitativa de álcool na urina, soro ou plasma humanos.

Resumo e explicação do teste

Além de se encontrar nas bebidas, o álcool etílico (etanol ou álcool) também pode ser encontrado em concentrações elevadas em diversos produtos, tais como elixires bucais, águas de colónia, doces e preparados medicinais. Quando o álcool é ingerido, atravessa todos os tecidos do corpo no espaço de uma hora. Cerca de 95 % do álcool é metabolizado no fígado e o restante é excretado de forma inalterada.

A intoxicação por álcool pode levar a defeitos congénitos (por ex., síndrome alcoólica fetal), perda de vigilância, entorpecimento, coma e morte. A determinação da concentração de álcool etílico é normalmente utilizada para medir a pena legal, investigar provas forenses, diagnosticar e/ou tratar a dependência do álcool e detetar intoxicação por álcool.

Estão disponíveis técnicas de cromatografia gasosa e diversos métodos enzimáticos para a determinação do álcool etílico. 1.2 Estas técnicas exigem um pré-tratamento das amostras ou períodos de incubação de 10 a 60 minutos. 3

O Ensaio DRI de álcool etílico é um método líquido, cinético e pronto a utilizar baseado na elevada especificidade da álcool desidrogenase (ADH, alcohol dehydrogenase) para o álcool etílico. Na presença de ADH e nicotinamida adenina dinucleótido (NAD), o álcool etílico é prontamente oxidado em acetaldeído e NADH. A reação enzimática pode ser monitorizada por espetrofotometria a 340 nm.

Material fornecido

Reagente tampão (A):

Contém tampão Tris com azida de sódio como conservante.

Reagente enzima (E):

Contém álcool desidrogenase (ADH) e NAD em tampão fosfato com estabilizador, e azida de sódio como conservante.

Material adicional necessário (vendido separadamente):

Calibradores e controlos DRI de álcool etílico:

REF	Descrição do kit
0311	Álcool etílico Calibrador negativo, 5 ml
1405	Álcool etílico Calibrador negativo, 25 ml
0239	Álcool etílico 50 mg/dL Controlador, 5 ml
0241	Álcool etílico 100 mg/dL Calibrador, 5 ml
1406	Álcool etílico 100 mg/dL Calibrador, 25 ml
0243	Álcool etílico 300 mg/dL Controlo, 5 ml

Precauções e advertências

Este teste destina-se apenas a utilização em diagnóstico in vitro Os componentes são prejudiciais se forem ingeridos.

PERIGO: Ensaio DRI de álcool etílico contém ≤ 2,0% de soro-albumina bovina (BSA).

Os reagentes utilizados nos componentes do ensaio contêm ≤ 0,10 % de azida de sódio. Evite o contacto com a pele e membranas mucosas. Lave as áreas afetadas com água abundante. Em caso de exposição ocular ou ingestão, procure cuidados médicos imediatamente. A azida de sódio pode reagir com canalizações de cobre ou chumbo e formar azidas metálicas potencialmente explosivas. Quando eliminar esses reagentes, faça sempre descargas com muita água para evitar a acumulação de azidas. Limpe as superfícies metálicas expostas com hidróxido de sódio a 10 %.

H317 - Pode provocar uma reação alérgica cutânea.

H334 - Quando inalado, pode provocar sintomas de alergia, de asma ou dificuldades respiratórias. EUH032 - O contacto com ácidos liberta gás muito tóxico.

Evitar respirar névoas ou vapores. A roupa de trabalho contaminada não pode sair do local de trabalho. Em caso de ventilação inadequada, usar proteção respiratória. Se entrar em contacto com a pele: lavar com sabão e água abundantes. EM CASO DE INALAÇÃO: em caso de dificuldade respiratória, retirar a vítima para uma zona ao ar livre e mantê-la em repouso numa posição que não dificulte a respiração. Tratamento específico (consulte as informações de Primeiros Socorros no rótulo do produto e/ou a Secção 4 da ficha de segurança). Em caso de irritação cutânea ou prurido: consultar um médico. Em caso de sintomas respiratórios: contactar um CENTRO DE INFORMAÇÃO ANTIVENENOS ou um médico. Eliminar o conteúdo/recipiente em local conforme os regulamentos locais/regionais/nacionais/internacionais.

Não utilize os reagentes depois do fim dos prazos de validade.

Não deixe os calibradores ou controlos abertos mais tempo do que o necessário. Armazene-os bem fechados dentro de um frigorífico sempre que possível para evitar a evaporação de álcool.

Níveis elevados de ácido lático e desidrogenase lática (LDH) em amostras post mortem podem levar a resultados elevados de álcool etílico.

Preparação e armazenamento dos reagentes

Os reagentes estão prontos a utilizar. Não é necessária qualquer preparação dos reagentes. Todos os componentes do ensaio, quando devidamente armazenados a 2-8 °C, são estáveis até à data de validade indicada no rótulo.

Recolha e manuseamento de amostras

Recolha as amostras de urina, plasma ou soro em recipientes de plástico ou de vidro. Deverá tomar as medidas adequadas para preservar a integridade química da amostra de urina desde a sua recolha até ao ensaio.

As amostras de urina mantidas à temperatura ambiente que não sejam submetidas ao teste inicial no espaço de 7 dias² após a chegada ao laboratório podem ser colocadas numa unidade de refrigeração protegida a 2–8 °C durante dois meses⁴. Para um armazenamento mais prolongado antes da análise ou para a manutenção da amostra após a análise, as amostras de urina podem ser conservadas a -20 °C⁴.⁵.

As amostras de plasma ou soro mantidas à temperatura ambiente que não sejam submetidas ao teste inicial no espaço de 10 dias⁶ após a chegada ao laboratório podem ser colocadas numa unidade de refrigeração protegida a 2–8 °C durante 10 dias⁶. Para um armazenamento mais prolongado antes da análise ou para a manutenção da amostra após a análise, as amostras de urina podem ser conservadas a -20 °C⁶.

As amostras dentro de um intervalo de pH de 3 a 11 são adequadas para teste com este ensaio.

Os laboratórios que seguem as orientações obrigatórias da SAMHSA devem consultar os requisitos de "Armazenamento refrigerado a curto prazo" e "Armazenamento a longo prazo" da SAMHSA.⁷

Para proteger a integridade da amostra, não induza espuma e evite ciclos repetidos de congelamento/descongelamento. Deve fazer-se um esforço para manter as amostras pipetadas livres de excesso de resíduos. Recomenda-se a centrifugação de amostras muito turvas antes da análise. As amostras congeladas devem ser descongeladas e misturadas antes tar análise. A adulteração da amostra de urina pode produzir resultados erróneos. Se suspeitar de adulteração, obtenha outra amostra e envie ambas as amostras para o laboratório para teste.

Trate todas as amostras de urina como potencialmente infeciosas.

Procedimento do ensaio

Os analisadores capazes de manter uma temperatura constante, de pipetar amostras, de misturar reagentes, de medir taxas de enzimas a 340 nm e de cronometrar com precisão a reação podem ser utilizados para executar este ensaio.

Consulte as instruções de aplicação específicas de cada analisador para detetar parâmetros de química antes de executar o ensaio.

Controlo de qualidade e calibração

As boas práticas laboratoriais sugerem a utilização de controlos para assegurar o adequado desempenho do ensaio. A Microgenics disponibiliza controlos de álcool etílico de 50 mg/dl e de 300 mg/dl. Estabeleça os intervalos de controlo aceitáveis para o seu laboratório. Devem ser utilizados calibradores de álcool negativos e de 100 mg/dl para calibrar o ensaio. Devem ser utilizados controlos pelo menos uma vez por dia para validar o desempenho do ensaio. Todos os requisitos de controlo de qualidade deverão ser realizados em conformidade com as regulamentações locais, estatais e/ou federais ou requisitos de acreditação.

Resultados

A taxa de metabolismo e excreção do álcool varia de um indivíduo para outro e depende de fatores como o sexo, idade, peso, conteúdo do estômago, utilização simultânea de medicamentos e condições de saúde. O Ensaio DRI de álcool etílico pode quantificar com precisão as concentrações de álcool num intervalo de 10 mg/dl (0,01 %) a 600 mg/dl (0,6 %).

A definição legal de intoxicação varia. A tabela que se segue é recomendada como diretiva geral para o significado do nível de álcool no sangue (soro e/ou plasma): 8

Nível de álcool no sangue	Consumidores esporádicos	Consumidores crónicos
100 mg/dl ou 0,1 %	Estado de embriaguez previsto por lei	Sinais mínimos
200-250 mg/dl ou 0,2-0,25 %	Perda de vigilância, letargia	Esforço necessário para manter o controlo
300-350 mg/dl ou 0,3-0,35 %	Entorpecimento, possivelmente coma	Sonolência e lentidão
> 500 mg/dl ou > 0,5 %	Possibilidade de morte	Coma

As concentrações de álcool na urina são frequentemente utilizadas para calcular as concentrações de álcool no sangue. Durante a fase de eliminação, a taxa de álcool de 1,3 na urina/sangue proporciona uma estimativa válida na maior parte dos casos.9

Limites

- Os níveis legais de intoxicação por álcool variam. O resultado do teste deve ser interpretado à luz de sintomas e sinais clínicos.
- O álcool etílico é volátil. As precauções sugeridas na secção Recolha e manuseamento de amostras são necessárias para evitar a evaporação de álcool dos calibradores, controlos e amostras.
- 3. O teste foi concebido para utilização apenas com urina, soro e plasma humanos.
- Níveis elevados de ácido lático e LDH em amostras postmortem podem levar a resultados elevados de álcool etílico.

Características típicas do desempenho

Os resultados de desempenho obtidos no analisador Hitachi 717 são apresentados em baixo. 10 Os resultados obtidos no seu laboratório podem ser diferentes destes dados.

Precisão

As precisões na mesma determinação e entre determinações foram avaliadas com os seguintes resultados:

	Precisão na mesma determinação		
Amostra	n	Média ± D.P. (mg/dl)	% CV
50 mg/dl	12	48,6 ± 1,3	2,7
100 mg/dl	12	100,3 ± 1,2	1,2
300 mg/dl	12	290,2 ± 1,9	0,6

	Precisão entre determinações		
Amostra	n	Média ± D.P. (mg/dl)	% CV
50 mg/dl	10	50,7 ± 4,5	4,5
250 mg/dl	10	253,7 ± 6,7	2,6

Sensibilidade

A sensibilidade, definida como a concentração mais baixa que se pode diferenciar da amostra negativa, é de $10 \, mg/dl$ (ou $0.01 \, \%$).

Linearidade

O ensaio é linear até uma concentração de 600 mg/dl. As amostras com uma concentração de álcool superior a 600 mg/dl podem ser diluídas com o calibrador negativo. Repita o ensaio e multiplique o resultado pelo fator de diluição para obter a concentração verdadeira.

Especificidade

As amostras hemolizadas grosseiramente (800 mg/dl de hemoglobina), ictéricas (30 mg/dl de bilirrubina) e lipémicas (1.000 mg/dl de triglicéridos) não apresentaram interferências com o ensaio. Foi testada a reatividade cruzada de diversos compostos orgânicos estruturalmente relacionados no ensaio. A tabela que se seque resume os resultados:

Composto	Nível testado (mg/dl)	% Reatividade cruzada
Acetaldeído	2.000	0
Acetona	2.000	0
n-Butanol	2.000	1,7
Glicol etileno	2.000	0
Isopropanol	2.000	0
Metanol	2.000	0
n-Propanol	2.000	10,7

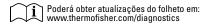
Correlação

Foi avaliada a concentração de álcool etílico de cento e vinte e cinco amostras clínicas, tanto com o Ensaio DRI de álcool etílico (y) como com um ensaio de álcool etílico disponível no mercado (x). Foram obtidos uma equação de regressão linear de y = 1,02x + 2,05 e um coeficiente de correlação (r) de 0,982.

Bibliografia

- Baselt RC: Disposition of Toxic Drugs and Chemicals in Man. ed Chicago, IL, Year Book Medical Publishers Inc. 1989, pp 322-24.
- Beutler HO: Ethanol. In: Bergmeyer HU, ed. Methods of Enzymatic Analysis, Vol. VI, 3rd ed. New York: Academic Press, 1984, pp 598 - 606.
- Redetzki HM, Dees WL, Comparison of Four Kits for Enzymatic Determination of Ethanol in Blood. Clin Chem 22, 83 (1976).
- Mandic-Radic S, Dzingalasevic G, Lukovic N. Stability of Ethanol in Blood and Urine Samples. JMB 26: 241-244, 2007.
- C52-A2, Toxicology and Drug Testing in the Clinical Laboratory; Approved Guideline Second Edition, Clinical and Laboratory Standards Institute (CLSI) (April 2007).
- Penetar DM, McNeil JF, Ryan ET, Lukas, SE. Comparison Among Plasma, Serum, and Whole Blood Ethanol Concentrations: Impact of Storage Conditions and Collection Tubes. J Anal Toxicol. 2008 September: 32(7): 505-510.
- Notice of Mandatory Guidelines for Federal Workplace Drug Testing Program: Final Guidelines; Federal Register, Substance Abuse and Mental Health Administration (SAMHSA), (1994) 110 (June 9):11983.
- Ellenhorn MJ, and BG Barceloux: Medical Toxicology, New York, Elsevier Science Publishing Company, Inc. 1988, pp 525-6 and 782-96.
- Heise HA. Concentrations of Alcohol in Samples of Blood and Urine Taken at The Same Time. J For Sci 12, 454 (1967).
- 10. Data on file at Microgenics, a part of Thermo Fisher Scientific.

Glossário:


http://www.thermofisher.com/symbols-glossary

Microgenics Corporation 46500 Kato Road Fremont, CA 94538 USA Assistência técnica e ao cliente nos EUA: 1-800-232-3342

EC REP
B·R·A·H·M·S GmbH
Neuendorfstrasse 25
16761 Hennigsdorf, Germany

Outros países:

Contacte o representante local da Thermo Fisher Scientific.

