

ThermoFisher SCIENTIFIC

Why Do You Need Quality Controls For Oncology Assays?

Kara Norman, Ph.D.

The world leader in serving science

Ph.D. in Molecular Oncology & Virology at the University of Calgary, Canada

Cancer-killing reovirus

Postdoctoral Fellowship at Stanford University

- Hepatitis C virus and microRNA-122
- RNA regulation

Life Technologies / Thermo Fisher Scientific

• Quality Controls for Research and Diagnostics

Thermo Fisher Scientific Quality Controls: MAS And AcroMetrix

MAS Brand: Clinical Chemistry Controls

AcroMetrix Brand: Molecular Controls

Clinical Diagnostics Labs						Blood	IVD Manufacturers
Clinical Chemistry			Molecular Lab		Screening Labs		
General Chemistry	Urinalysis	Specialty + Toxicology	Immuno- assay + Cardiac	Infectious Disease Testing	Oncology Research Testing	Infectious Disease NAT / Serology	Custom Controls
Alcohol, CSF, Bilirubin, Urichem- TRAK	UA DipTube, Sentry Urine Diptstick	Immunology, Diabetes, DOA, TOX	Liquimmune, T-marker, Cardio- Immune	HIV, HCV, Transplant Viruses, MRSA etc.	NGS and PCR Controls	Yellow,Purple, HIV/HCV/HBV Syphilis etc.	Oncology, Serology, Infectious Diseases Assay Feasibility, LOD, Specificity V&V Panels, Implementation Packages

Omni Controls

Integrated controls: Omni•CORE, Omni•Immune, Omni•Immune Pro, Omni•Cardio

- Mimics patient samples
- Traceable to higher order standard eg. WHO

Thermo Fisher

Quality Assurance

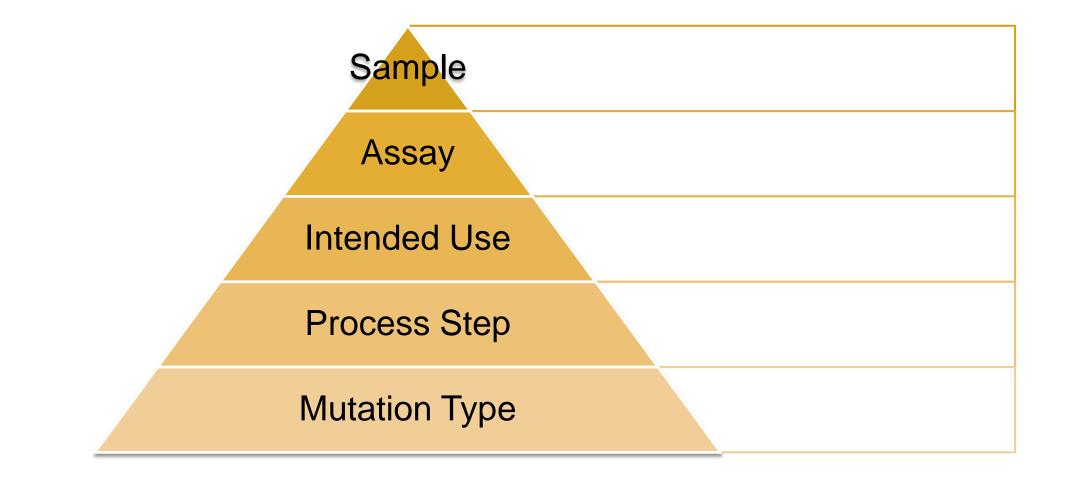
Lab Link xL 2.0 Cloud-based, all-in-one quality assurance software with real time peer QC data comparison

Agenda

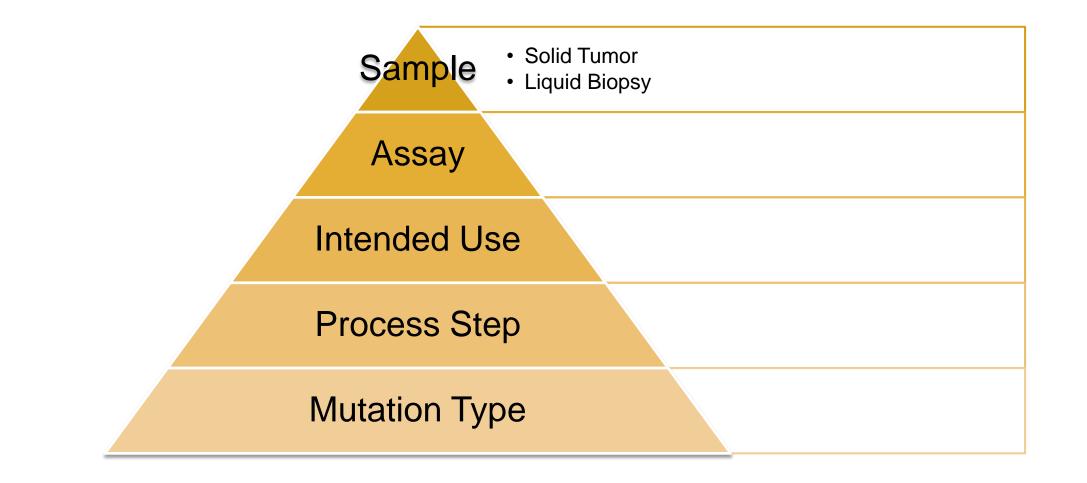
1. How do you choose a quality control for NGS?

2. How do you choose a *good* quality control for NGS?

3. Why should you perform regular QC for NGS?

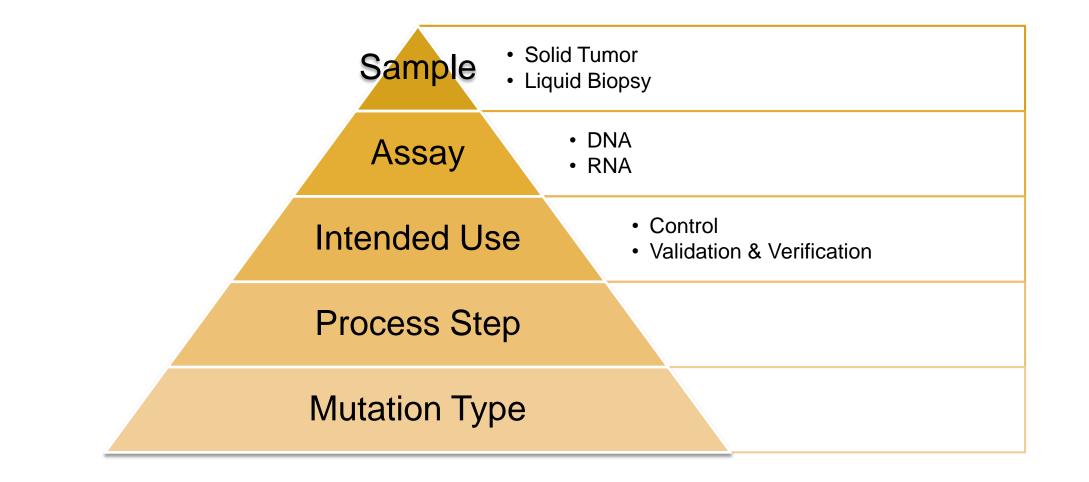

Agenda

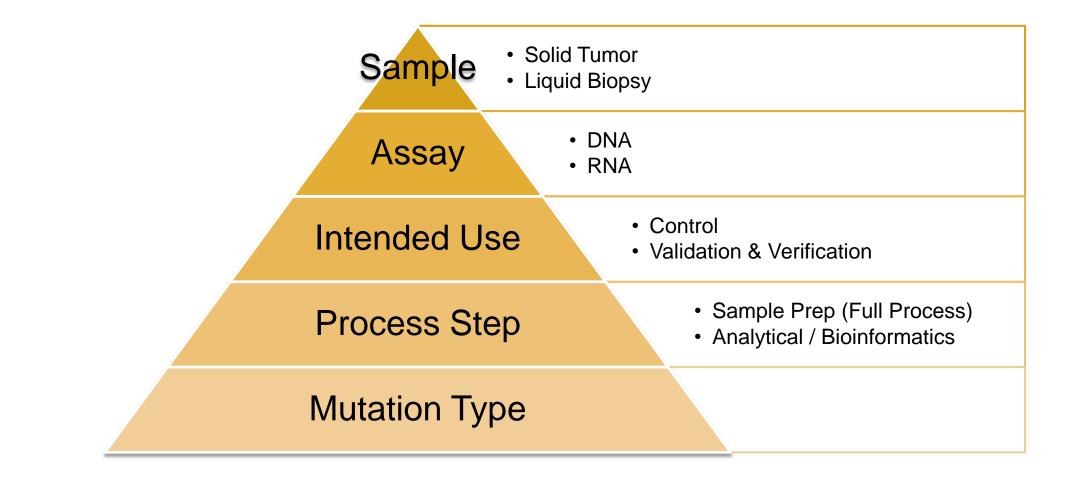
1. How do you choose a quality control for NGS?

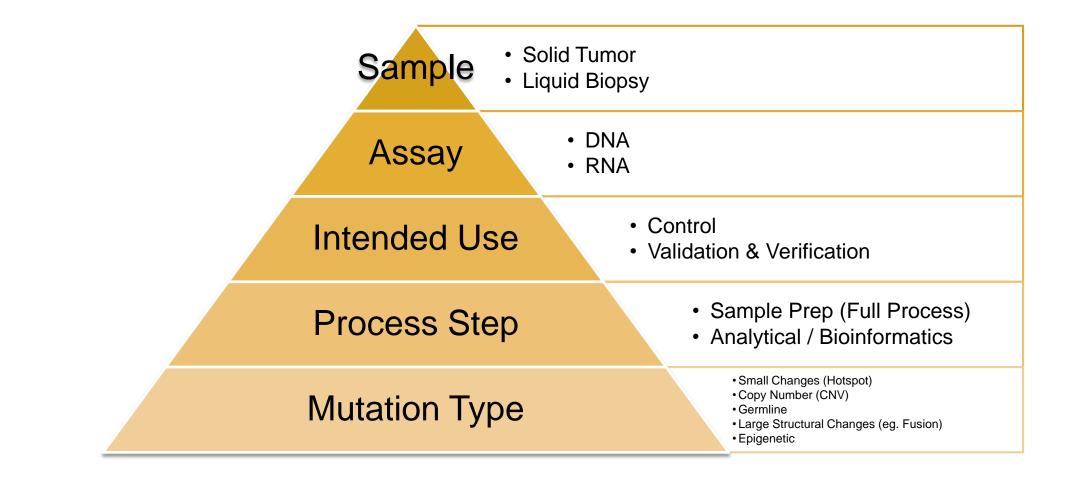

2. How do you choose a good quality control for NGS?

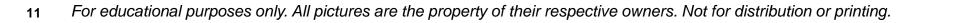
3. Why should you perform regular QC for NGS?

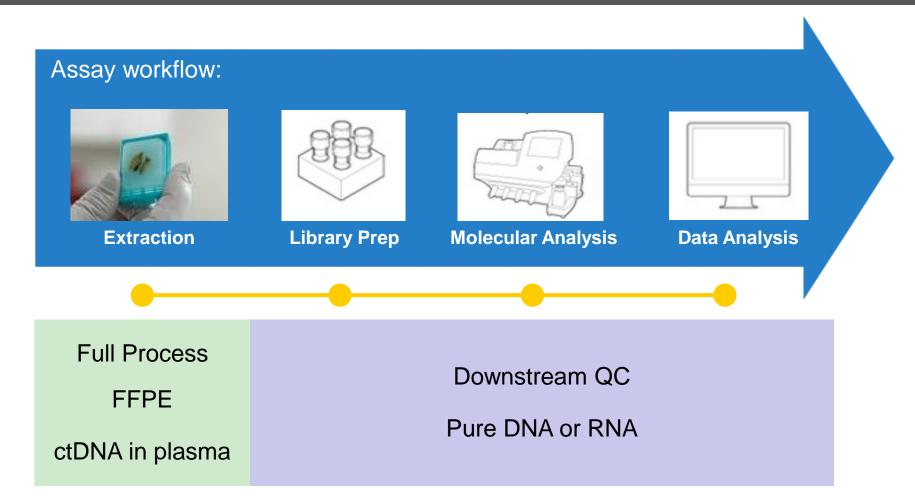












Choosing The Right Material For Your Application

Quality controls and reference materials are used for assay development and V&V, implementation, and regular QC monitoring

Agenda


1. How do you choose a quality control for NGS?

2. How do you choose a *good* quality control for NGS?

3. Why should you perform regular QC for NGS?

- Gold Standard Truth
- Traceable
- Commutable
- Streamlined
- Consistent
- Truth is the foundation of controls & standards field
- Need a Gold Standard
- Assay development is dependent on the availability of well characterized samples

False positives and false negatives are clearer when you know the truth

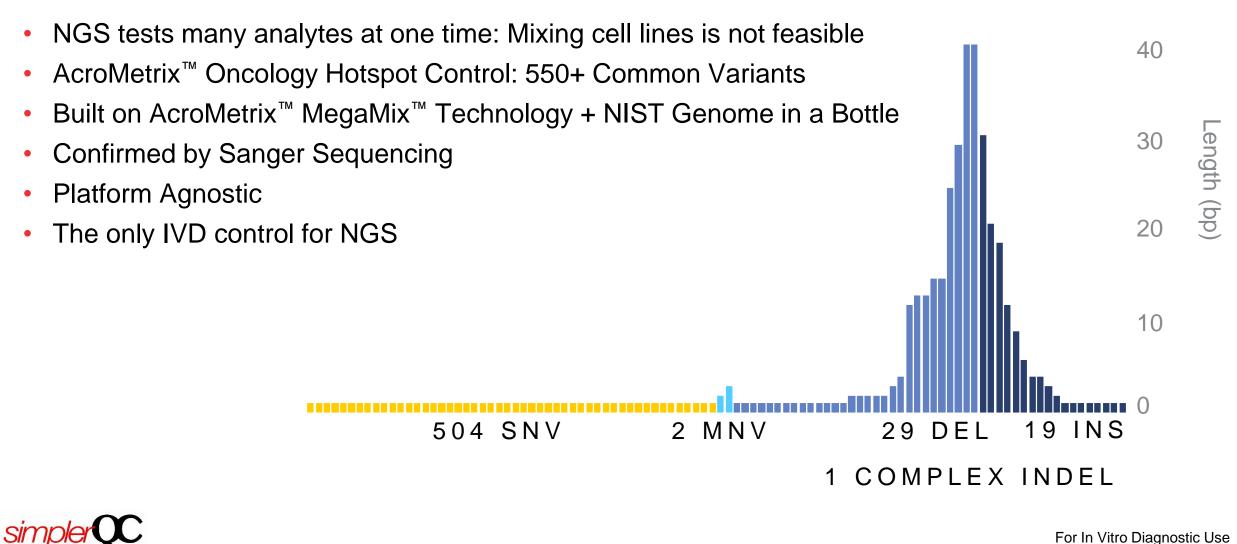
- Cell lines / lab tissue culture
 - Reference sequence unknown: NGS on one platform only is not sufficient every platform has limitations and only Sanger is generally accepted as the gold standard method
 - Effects of cell passage: unstable genomes / ploidy changes, cross-contamination (727 problematic cell lines identified¹)
 - Scars from genetic engineering / off-target modifications
 - Has the donor consented?

¹Cellosaurus: https://web.expasy.org/cgibin/cellosaurus/search?input=%27problematic% 20cell%20line%27

False positives and false negatives are clearer when you know the truth

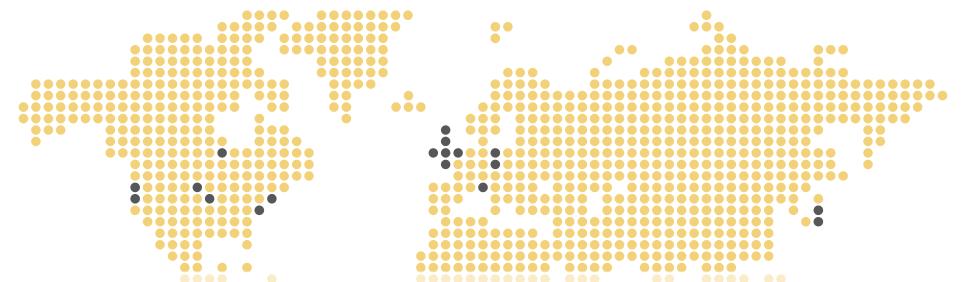
- Cell lines / lab tissue culture
 - Reference sequence unknown: NGS on one platform only is not sufficient every platform has limitations and only Sanger is generally accepted as the gold standard method
 - Effects of cell passage: unstable genomes / ploidy changes, cross-contamination (727 problematic cell lines identified¹)
 - Scars from genetic engineering / off-target modifications
 - Has the donor consented?
- So what do we do?

¹Cellosaurus: https://web.expasy.org/cgibin/cellosaurus/search?input=%27problematic% 20cell%20line%27


NIST: National Institute of Standards and Technology
(www.genomeinabottle.org) is hosted by
The Genome in a Bottle Consortium

Source	Human, Male, 45yr
Cell Type	B-Lymphocyte
Cell ID	GM24385

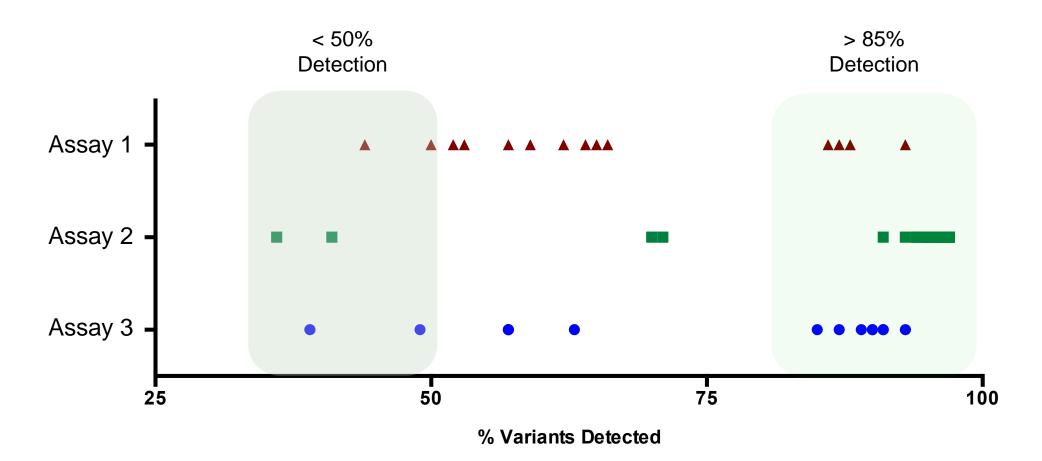
- Academic, industry, regulatory, and measurement science institutions with a goal to promote standardisation in whole genome sequencing.
- Incorporate sequences from as many platforms as possible to get to the truth sequence
 - The human genome is 3 billion base pairs
 - Every platform has strengths and weaknesses, and some regions are impossible for all platforms
 - GIAB enables IVD manufacturers to benchmark performance against a Gold Standard, eg. GM24385
- From the Personal Genome Project (http://www.personalgenomes.org)
 - Ensures appropriate donor consent is obtained



Knowing The Truth

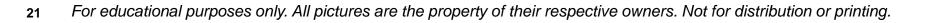
For In Vitro Diagnostic Use

• The same lot of AcroMetrix Oncology Hotspot Control was tested globally in 30+ sites


Bioinformatics pipelines varied between sites.

Knowing The Truth Enables Labs To Test Sensitivity

Genome in a Bottle Background + 555 Variants Most labs had > 85 % Sensitivity



How Do You Choose A *Good* Quality Control For NGS?

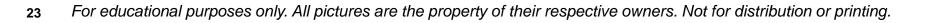
False positives and false negatives are clearer when you know the truth

- The human genome is extremely large and complex
- Using well-characterized controls enables simpler performance assessment
 - Fewer questionable results

How Do You Choose A *Good* Quality Control For NGS?

- Gold Standard Truth
- Traceable
- Commutable
- Streamlined
- Consistent

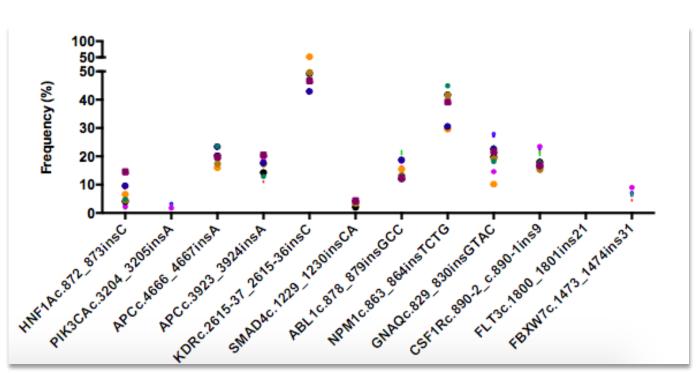
- Why is traceability important in measurement?
- It is easy to take measurement for granted
- How long is a meter?
- Two planes flying by each other from two different countries they need to agree on how far is 50 kilometers


Traceable Reference Materials Promote Measurement Standardization

- Gold Standard Truth
- Traceable
- Commutable
- Streamlined
- Consistent

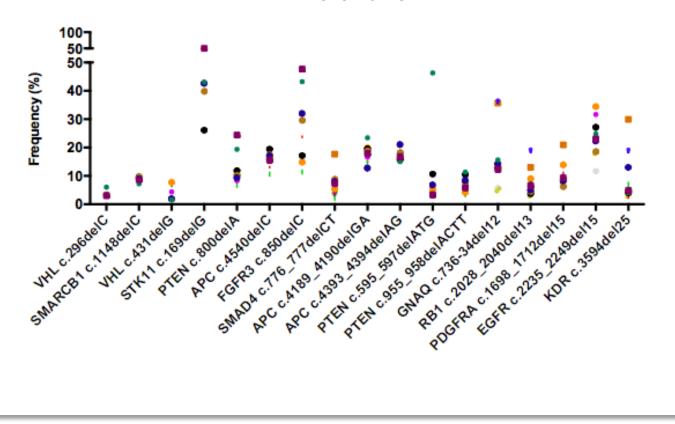
- Standardization and traceability improve with technology
- Some older definitions for the meter
 - the length of a pendulum having a half-period of one second (this was a problem because, gravity)
 - one ten-millionth of the length of the earth's meridian through Paris from pole to the equator (this was also a problem, because the earth has flat parts)
- Now: The meter is the length of the path travelled by light in vacuum over 1/299,792,458 th of a second

https://physics.nist.gov/cuu/Units/meter.html



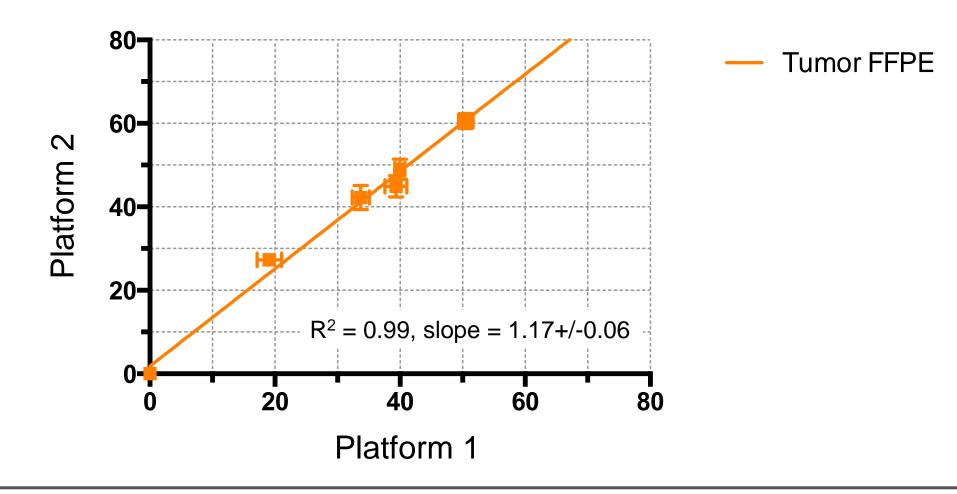
Traceable Reference Materials Promote Measurement Standardization

- Gold Standard Truth
- Traceable
- Commutable
- Streamlined
- Consistent
- Traceability in NGS is still evolving
- Calibrate all measurements to an international standard
- Anchor needs to be unchanging
- Anchor value assignment can be arbitrary (eg. International Unit) or established by a reference method
- Given that there is no anchor for most alleles, how much variability do we see in frequency across platforms and runs?



Insertions

- AcroMetrix Oncology Hotspot Control was tested globally in 30+ sites
- Data shown are from one NGS panel
- Most insertions and deletions were detected
- Reported frequency varied from lab to lab



Deletions

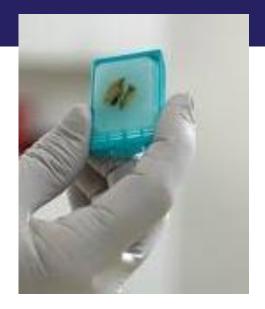
- AcroMetrix Oncology Hotspot Control was tested globally in 30+ sites
- Data shown are from one NGS panel
- Most insertions and deletions were detected
- Reported frequency varied from lab to lab

Human tumor FFPE sample tested on 2 NGS platforms 10% difference in measured frequency

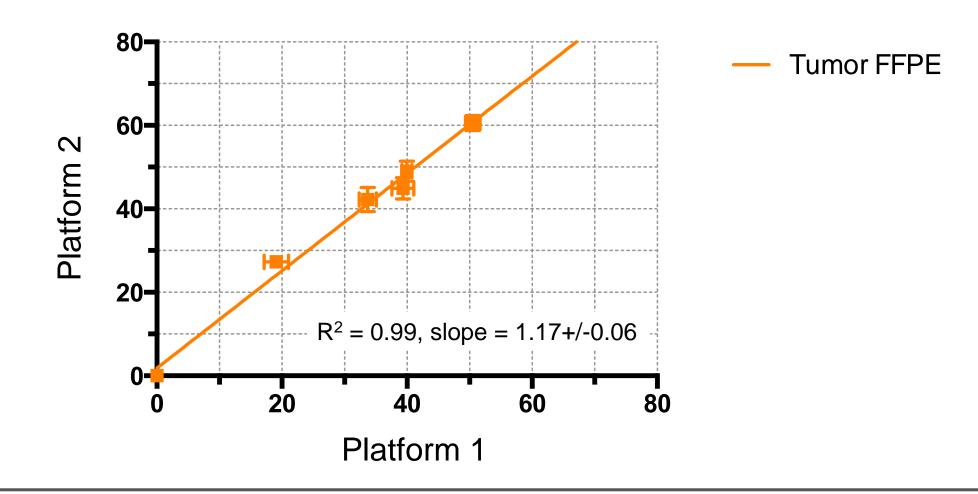
APC chr 5:112175770:G>A

Thermo Fisher

Traceable Reference Materials Promote Measurement Standardization

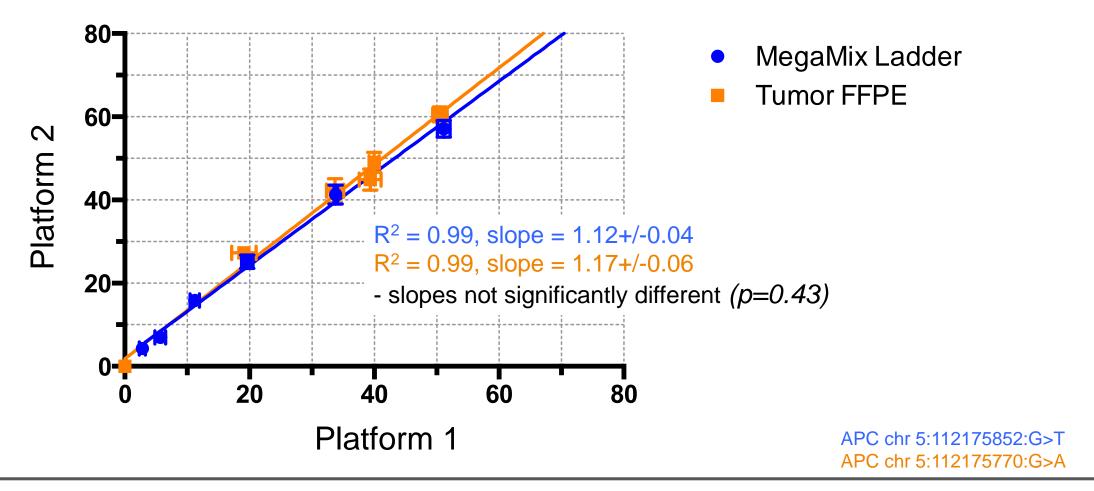

- Gold Standard Truth
- Traceable
- Commutable
- Streamlined
- Consistent
- There is currently no standardization across platforms for allelic frequency
- Variation seen in both control materials and in human samples
- Expect cross-platform differences

> Traceability & standardization will become more important as monitoring is implemented


- Gold Standard Truth
- Traceable
- Commutable
- Streamlined
- Consistent
- How well does a contrived sample mimic a human sample?
- Two examples: FFPE and circulating tumor DNA

Commutability Between FFPE And Synthetic DNA/Cell Lines

Human tumor FFPE sample tested on 2 NGS platforms Relative performance is linear



APC chr 5:112175770:G>A

Thermo Fisher

Commutability Between FFPE And Synthetic DNA/Cell Lines

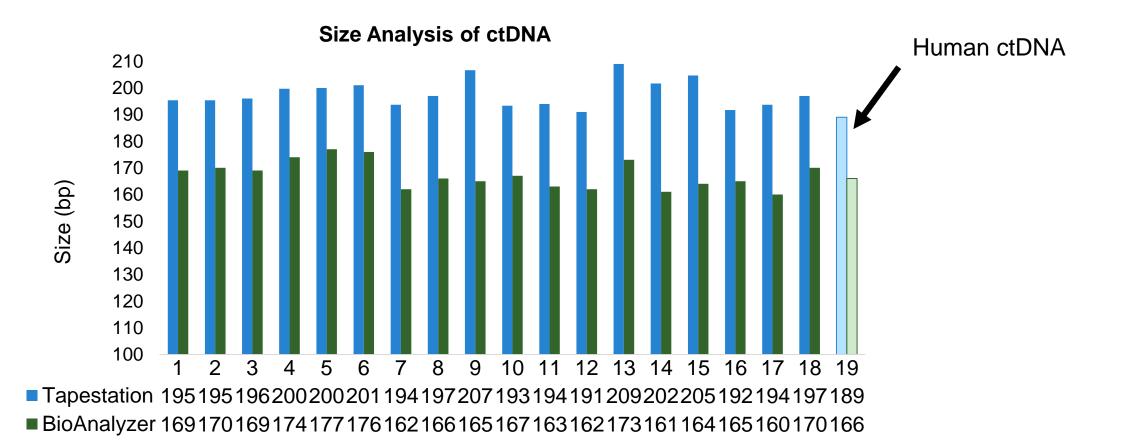
AcroMetrix Oncology Hotspot Control derivative material compared to a human tumor FFPE sample SNV frequency behaves like a tumor FFPE sample

31 For educational purposes only. All pictures are the property of their respective owners. Not for distribution or printing.

Thermo Fisher S C I E N T I F I C

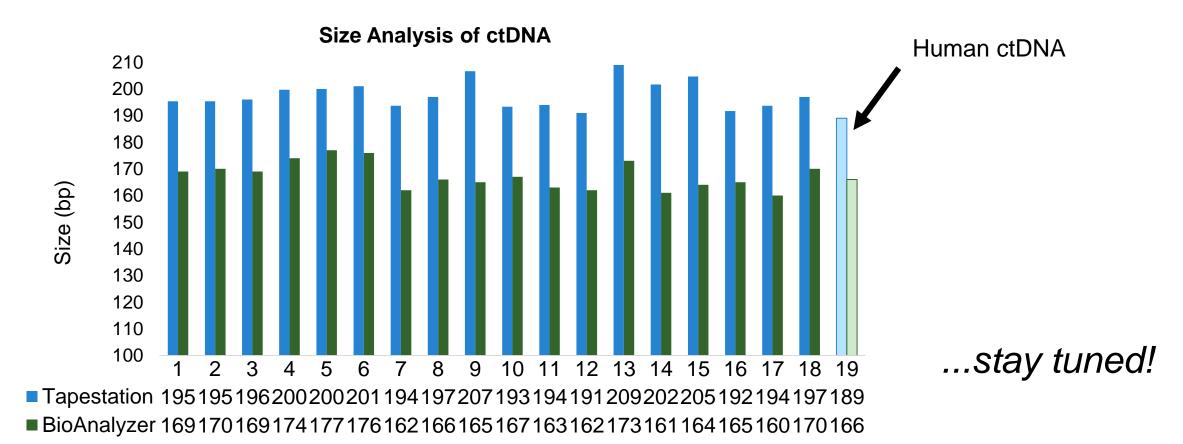
1. Start with real human plasma

Human Plasma Screening					
Target	Result				
Antibodies to HIV-1 and HIV-2	Not reactive				
Antibody to HCV	Not reactive				
Hepatitis B surface antigen (HBsAg)	Not reactive				
Antibodies to HTLV I-II	Not reactive				
HBV DNA	Not reactive				
HCV RNA	Not reactive				
HIV-1 RNA	Not reactive				
CMV DNA	Not reactive				
WNV RNA	Not reactive				
Bioburden (bacterial count)	≤ 10 CFU/mL				



2. Alleles of interest may need to be negative: confirm to appropriate level of sensitivity depending on platform

Target	Result
EGFR p.L858R mutation	Negative
KRAS p.G12D mutation	Negative
NRAS p.G12D mutation	Negative
EGFR exon 19 deletion	Negative
EGFR p.T790M mutation	Negative



3. Fragmentation to mimic human sample Be careful about your measurement platform!


3. Fragmentation to mimic human sampleBe careful about your measurement platform!

CIENTIFIC

How Do You Choose A *Good* Quality Control For NGS?


- Gold Standard Truth
- Traceable
- Commutable
- Streamlined
- Consistent
- Commutability is when:
 - the relative performance of a contrived sample mimics the relative performance of a human sample across multiple platforms
- Controls can be generated that closely mimic human samples

How Do You Choose A *Good* Quality Control For NGS?

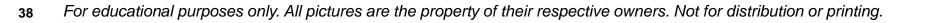
- Gold Standard Truth
- Traceable
- Commutable
- Streamlined
- Consistent
- Making reference materials takes time and money
 - Finding Materials
 - Variant Confirmation on Multiple Platforms
 - Value Assignment
 - Dilutions
 - Testing
 - Stability Confirmation

Reference Materials Need To Be Prepared For Many Experiments

What strategy is used today for NGS assay analytical validation?

Accuracy: The degree of agreement between the nucleic acid sequences derived from the assay and a reference sequence.

Precision: The degree to which repeated sequence analyses give the same result- repeatability and reproducibility.


Analytical sensitivity: Likelihood that the assay will detect the targeted sequence variations, if present.

Analytical specificity: Probability that the assay will not detect a sequence variation when none are present (the false positive rate).

Reportable range: Region of the genome in which sequence of an acceptable quality can be derived by the laboratory test.

Reference range: Reportable sequence variations the assay can detect that are expected to occur in an unaffected population.

Reduce # of runs, cost and time with well-designed reference materials

Accuracy: The degree of agreement between the nucleic acid sequences derived from the assay and a reference sequence.

Precision: The degree to which repeated sequence analyses give the same result- repeatability and reproducibility.

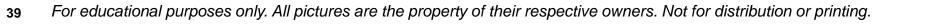
Analytical sensitivity: Likelihood that the assay will detect the targeted sequence variations, if present. # 0 Analytical specificity: Probability that the assay will r 35 variation when none are present (the false positive rate

Reportable range: Region of the genome in which sequacceptable quality can be derived by the laboratory test.

Reference range: Reportable sequence variations the assa expected to occur in an unaffected population.

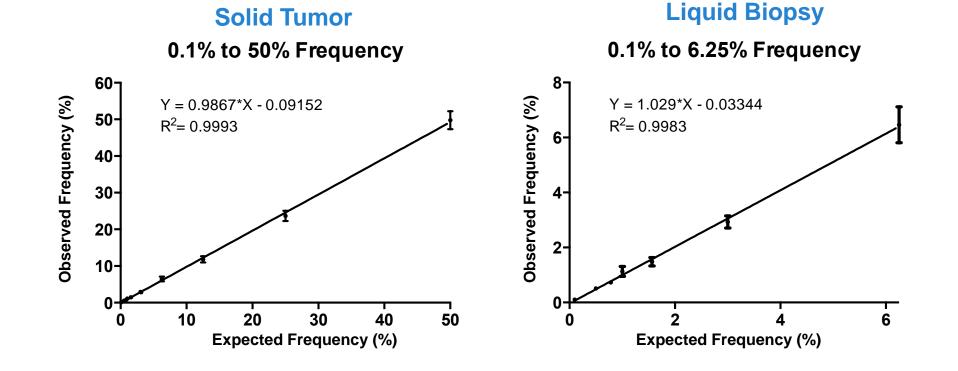
t the assay will r alse positive rate ne in which sequest. aboratory test. riations the assa

DIY


of Runs

of Runs

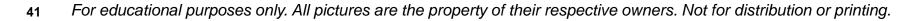
Frequency Ladder


CIENTIFIC

simplerQC

What Is A Frequency Ladder?

- Multiplexed variants all in one tube within a defined frequency range
- Linear dilution series to below LOD
- Run Frequency Ladder multiple times to capture assay reproducibility



Streamlined Verification Study With Six Highly Multiplexed Samples

Tube # : Frequency (%):			1 3		2 5		3 11		4 18		5 30		6 48	
ALK	c.3824G>A	p.R1275Q	3.8	4.4	7.7	8.7	15.5	15.9	25.8	27.2	41.2	47.2	63.1	58.5
ATM	c.1009C>T	p.R337C	4	4					21.9	21	36.8	33.6		57.9
BRAF	c.1799T>A	p.V600E	4	4.7	8.6		12.2			28.6		43.9	58	57.4
CDKN2A	c.172C>T	p.R58*	2.9	4.8		11.7		14.3	31.4	28.8		45.1	64.6	62
FGFR3	c.746C>G	p.S249C	4.2	3.6	5.5	5.4	10.7	10.5	23.1	20.6		37.8	54.2	51.1
FGFR3	c.1948A>G	p.K650E									25.3	24.8	42.1	44.8
GNAS	c.601C>T	p.R201C	4.6	4.2		7.5	15.5	12.4				42.4		58
HRAS	c.182A>G	p.Q61R	3.9	5.2		7.1	14.5	14.6	25.4		44.3	42.9		60.8
IDH1	c.395G>A	p.R132H	4.3	3.9						25.5	42.2	43.8	61.6	59.6
IDH2	c.419G>A	p.R140Q	2.8	3.2		6.8	10.1	10.9	19.9	20.9		31	51.7	50.1
JAK2	c.1849G>T	p.V617F		2.8			11.4	11.1	23	20.7		35	57.9	53.3
KRAS	c.35G>A	p.G12D	4.6	3.4		6.8	15.2	12.8		24.5		36.7	57.4	60
NRAS	c.182A>G	p.Q61R	3.2	2.9					22.8	24.6		35.7	54.3	55.5
NOTCH1	c.4799T>C	p.L1600P					3.8	6.5		9.2	23.4	19.5		36.8
PDGFRA	c.2525A>T	p.D842V	3.3	3.3					21.2	19.8			54.4	53
PIK3CA	c.1624G>A	p.E542K	3.4	2.7	8.5			12.8		22.2			57.7	54.7
RET	c.2753T>C	p.M918T		3.2				11.3	21.2	20.8	37.2	29.5		53.4
TP53	c.1015G>T	p.E339*	3				12.1	11.1	20.3		33.6	34.2		49.8
TP53	c.743G>A	p.R248Q	3	3.6		7.1	11.2	12.2	21.1	23.7	32.8		54.1	55.6
VHL	c.277G>C	p.G93R	4.8	4.7		9.1	14.3	14.3	23.5	25.5	39.8	41.2		57

Variant stratification
 / bucketing

For Research Use Only. Not For Use In Diagnostic Procedures.

ThermoFisher SCIENTIFIC

Detected

Not Detected

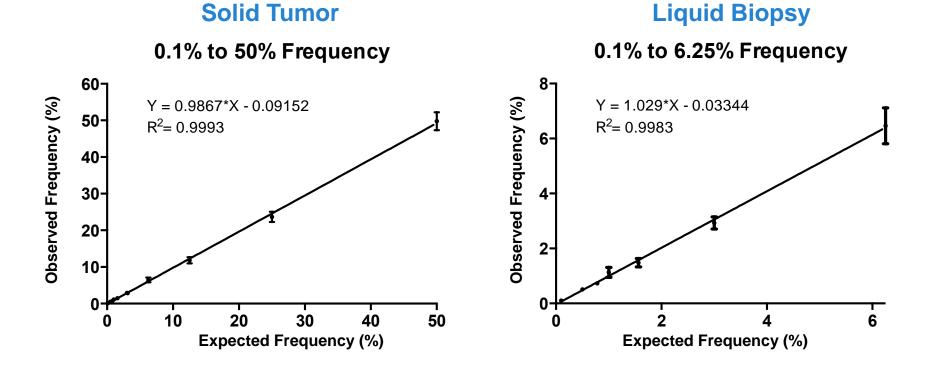
Streamlined Verification Study With Six Highly Multiplexed Samples

Tube #:			1		2		3		4		5		6	
Frequency (%):			3		5		11		18		30		48	
Gene	Mutation CDS	Туре	1	2	1	2	1	2	1	2	1	2	1	2
RET	c.1894_1906>AGCT	Cmplx						10.3	14.3		27.3	27.3	46.5	46.6
APC	c.3923_3924insA	INS-1					16.3	16	27.8	24.5	37.5	39.9	59.6	56.9
APC	c.4666_4667insA	INS-1												36.1
ERBB2	c.2324_2325ins12	INS-12	3.1		5.5	5.7	10.6	10.9	19.4	18.3	31.7	29.8	48.4	47.6
КІТ	c.1509_1510ins6	INS-6		3	5.3	7.2	7.8	11.9	20	31.3	30.8	45.3	46.7	65.2
FLT3	c.1800_1801ins21	INS-21							11.6	7.8	15.5	14.1	36.1	39.4
NPM1	c.863_864insTCTG	INS-4			8.2	8.1	15	17.7	27.3	33.5	40.8	49.6	59.7	63.4
РІКЗСА	c.3204_3205insA	INS-1	2.8		5.8	6.7	11.7	11.8	22.9	20.7	37.4	34.9	54.8	54.8
SMAD4	c.1229_1230insCA	INS-2	4	4.3	6.9	6.3	13.6	13.5	25.1	27.1	35.9	43.3	58.7	59.1
GNAQ	ACA>TGC	MNP			6.2	7.6	12.7	13.8	23.2	21.4	40.2	33.5	58.6	56.2
EGFR	c.2235_2249del15	DEL-15					18.3	16.8	26.2	27.7	41.4	43.6	61.2	59.5
PTEN	c.800delA	DEL-1					_							
RB1	c.2028_2040del13	DEL-13			4.3	6		8.4	14.9				45.6	45.6
SMAD4	c.776_777delCT	DEL-2	2.9	3.8	7.9	7.8	15	14.6	24.5	27.4	35.7	36.5	59.6	56.7
VHL	c.431delG	DEL-1	3.9	3.2	7.6	7.6	14.3	12	26.7	23.6	38.8	36.1	58.9	56.8
VHL	c.296delC	DEL-1								20.7	42.2	43.1	69.8	62

Variant stratification
 / bucketing

Detected
Not Detected

For Research Use Only. Not For Use In Diagnostic Procedures.



How Do You Choose A *Good* Quality Control For NGS?

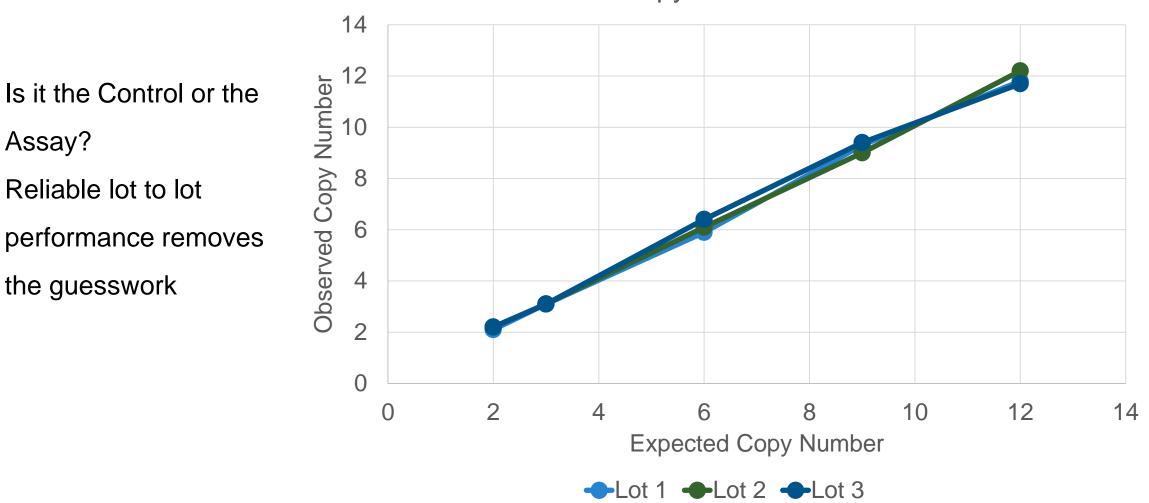
- Gold Standard Truth
- Traceable
- Commutable
- Streamlined
- Consistent

What is a Frequency Ladder?

- Choose variants of interest
- Lowest frequency in a
 level defines the limit of
 detection

CIENTIFIC

How Do You Choose A *Good* Quality Control For NGS?


- Gold Standard Truth
- Traceable
- Commutable
- Streamlined
- Consistent

Quality Controls need to be high quality

Lot To Lot Control Consistency Enables Detection Of Changes In The Assay System

MET Copy Number Ladder

٠

۲

Agenda

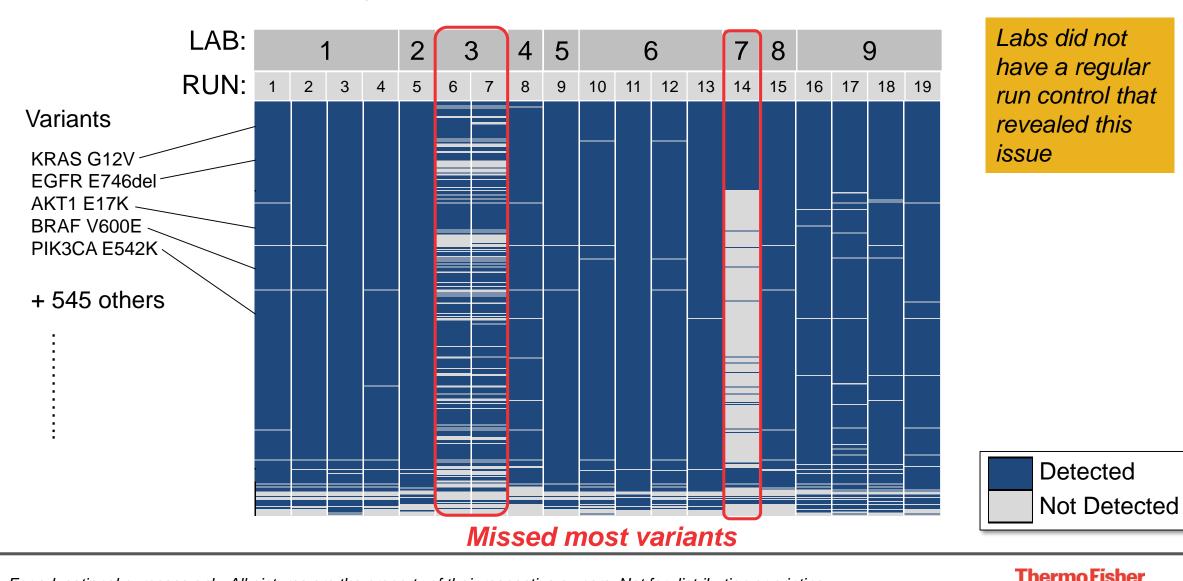
1. How do you choose a quality control for NGS?

2. How do you choose a *good* quality control for NGS?

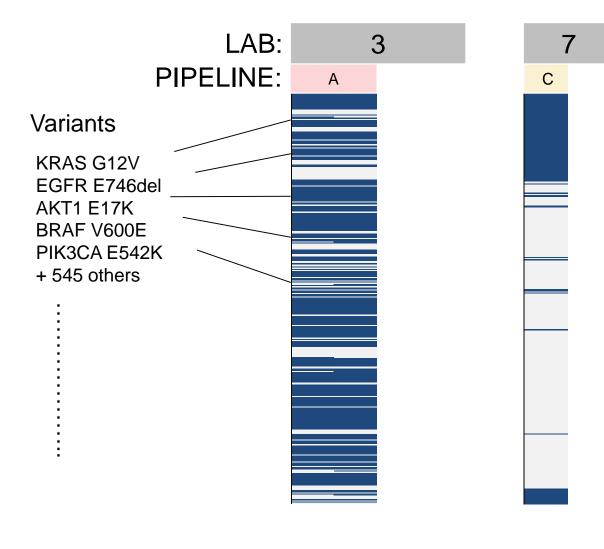
3. Why should you perform regular QC for NGS?

Why Are Reference Materials Needed For Regular QC?

Important indicator of run quality


Bioinformatics control

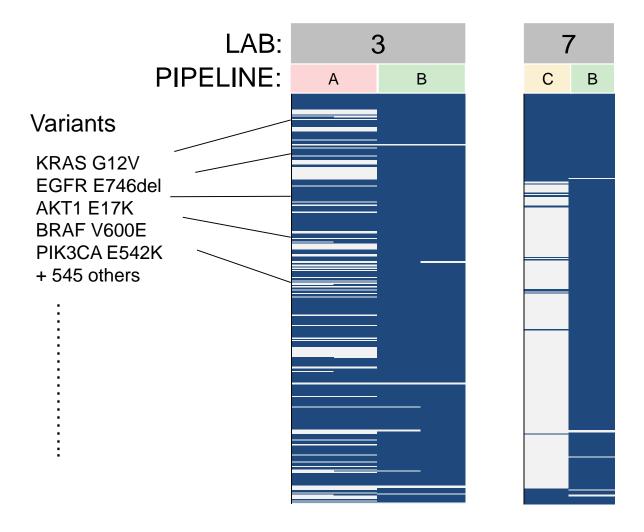
- Global study: Running controls prevents surprises
- 2. Study: Read coverage is *not* a good proxy for regular QC



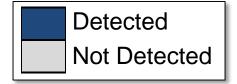
• 9 labs, same assay, same instrument:

SCIENTIFIC

Regular QC Prevents Surprises

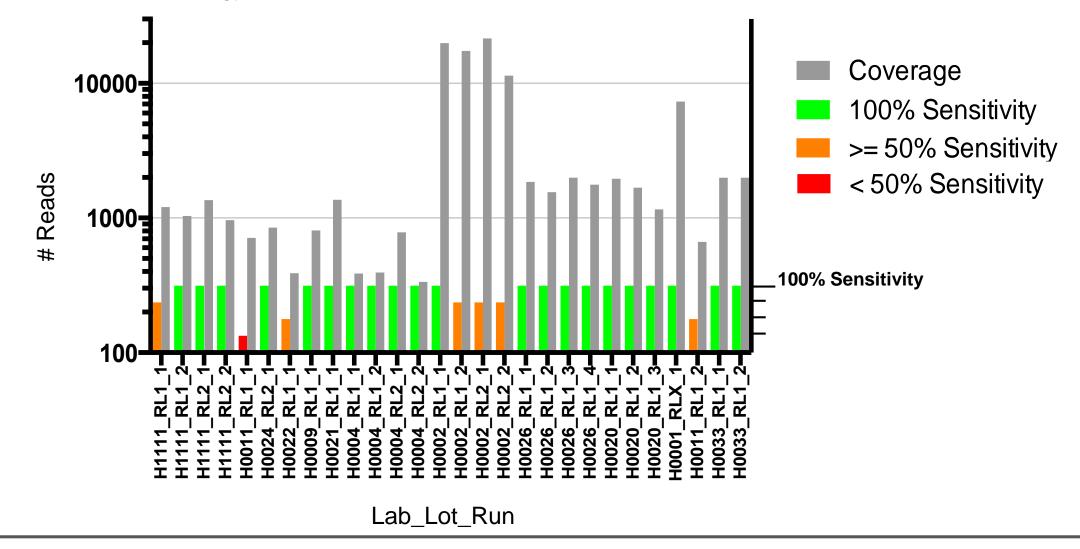


Labs did not have a regular run control that revealed this issue



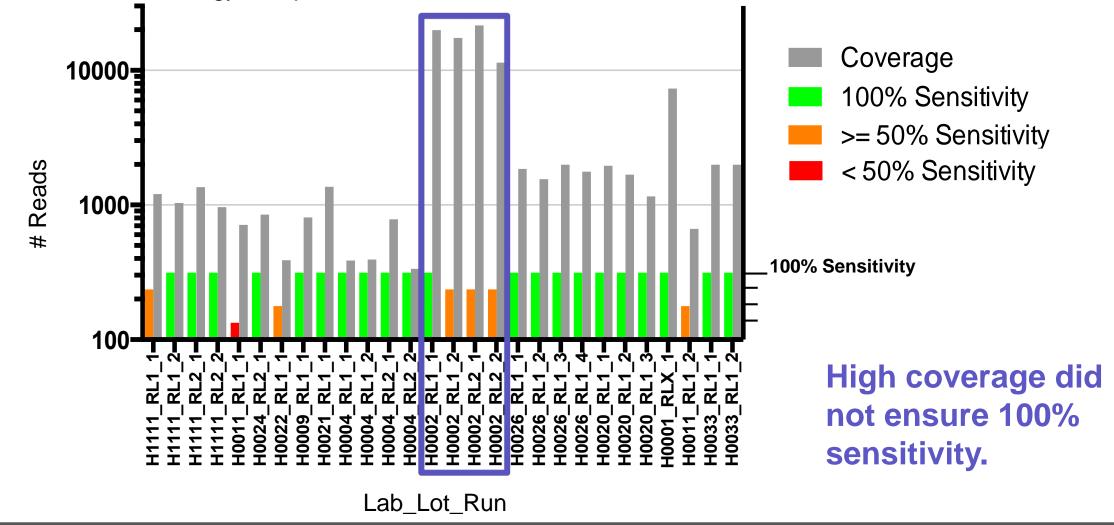
ThermoFisher SCIENTIFIC

Regular QC Prevents Surprises


Labs did not have a regular run control that revealed this issue

ThermoFisher SCIENTIFIC

Study: Read coverage is *not* a good proxy for regular QC


Average coverage was calculated over 28 runs in 12 labs for one amplicon (in TP53), which contains 4 variants in the AcroMetrix Oncology Hotspot Control.

Study: Read coverage is *not* a good proxy for regular QC

Average coverage was calculated over 28 runs in 12 labs for one amplicon (in TP53), which contains 4 variants in the AcroMetrix Oncology Hotspot Control.

CIENTIFIC

Why Are Reference Materials Needed For Regular QC?

Important indicator of run quality

Bioinformatics control

- Global study: Running controls prevents surprises
- 2. Study: Read coverage is *not* a good proxy for regular QC

Agenda

1. How do you choose a quality control for NGS?

2. How do you choose a *good* quality control for NGS?

3. Why should you perform regular QC for NGS?

Thank You!

Kara Norman

AcroMetrix R&D Leader – Thermo Fisher Scientific Kara.Norman@thermofisher.com

Technical Support <u>mas.controls@thermofisher.com</u> 1-800-232-3342, option 2, then option 2

© 2017 Thermo Fisher Scientific, Inc. All rights reserved.

"AcroMetrix" and all other trademarks are the property of Thermo Fisher Scientific Inc. and its subsidiaries.

