CK-NAC REAGENT
CREATINE KINASE, ACTIVATED BY N-ACETYL CYSTEINE

PRODUCT SUMMARY

Stability: 7 days at 2-8°C
Linear Range: Up to 1500 U/L
Specimen Type: Serum or plasma
Method: Kinetic
Reagent Preparation: Add specified volume of distilled or deionized water.

METHODOLOGY

The CK-NAC reagent is based on the method of Oliver1 modified by Rosalki2 and Szasz.3 The series of reactions involved in the assay system is as follows:

1. Inactivated CK + NAC → Reactivated CK
2. Creatine Phosphate + Mg-ADP → ATP + Creatine
3. ATP + Glucose → ADP + G-6-P
4. G-6-P + NADP⁺ → 6-PG + NADPH + H⁺
5. 2ADP + AK → AMP + ATP (Inhibited by APSA and AMP)

1. As CK in serum is rapidly inactivated, in order to ensure full catalytic activity, the CK molecule must be reactivated by a thiol compound. During the first stage, sample incubates with the thiol compound N-acetyl cysteine (NAC) which reactivates the CK molecule by rapidly reducing oxidised sulfhydryl compounds at the active site.
2. In the second stage the substrate enzyme creatine phosphate initiates a series of catalysed reactions. In the first of these reactions CK catalyses the formation of ATP from creatine phosphate and ADP.
3. ATP formed in 2 is used to form glucose-6-phosphate in a reaction catalysed by Hexokinase.
4. Glucose-6-phosphate produced in 3 is oxidised to 6-phosphogluconate and NADP is reduced to NADPH in a reaction catalysed by Glucose-6-phosphate dehydrogenase.
5. AMP and P1P5-D(adenosine-5’-)pentaphosphate (APSPA) are added to inhibit adenylate kinase (myokinase) activity.

CLINICAL SIGNIFICANCE

Creatine kinase (CK) is a dimeric enzyme composed of two types of monomer sub-units, M (Muscular) and B (Brain) which combine to form three distinct CK isoenymes, CK-1 (BB), CK-2 (MB) and CK-3 (MM). The main proportion of total CK activity is found in the skeletal muscle and this is predominantly the CK-3 isofrom. Other tissues with relatively high levels of CK include the myocardium, of which approximately 40% is the CK-2 isofrom, gastrointestinal tract and brain where the CK-1 isofrom predominates. Damage or disease to any of these tissues such as muscular dystrophy, myocardial infarction and acute cerebro vascular accident, will result in elevated blood levels of the enzyme.

STABILITY AND STORAGE

When stored capped at 2-8°C, the reagent is stable for at least 7 days. It is recommended that when the reagent is not in use for prolonged periods of time (eg: overnight) that the reagent be capped and stored at 2-8°C.

REAGENT COMPOSITION

- Active Ingredient: Creatine Phosphate
- Concentration: 31.5 mmol/L
- Bis / Tri Buffer
- Creatine Phosphate
- AMP
- NADP
- EDTA
- APSA
- Mg²⁺
- ADP
- D-Glucose
- N-acetyl-cysteine
- Hexokinase (yeast)
- G-6-PDH (leuconostoc)
- pH 6.80 ± 0.1 at 20°C

SYSTEM PARAMETERS

- Temperature: 37°C
- Primary Wavelength: 340 nm (334, 365 nm)
- Secondary Wavelength: 405 nm
- Assay Type: Rate/Kinetic
- Direction: Increase
- Sample : Reagent Ratio: 1 : 20
- eg: Sample Vol: 15 µL
- Reagent Vol: 300 µL
1. Studies to determine the level of interference from haemoglobin, bilirubin (free and conjugated), lipaemia, ascorbic acid and glucose were carried out. The following results were obtained:

Haemoglobin: Avoid haemolysed specimens since red cells contain reaction intermediates such as ATP and G-6-P.

Free Bilirubin: No interference from free bilirubin up to 500µmol/L (29mg/dL).

Conjugated Bilirubin: No interference from conjugated bilirubin up to 500µmol/L (29mg/dL).

Lipaemia: No interference from lipaemia, measured as triglycerides, up to 6mmol/L (531mg/dL).

Ascorbic Acid: No interference from ascorbic acid up to 2.5 mmol/L.

Glucose: No interference from glucose up to 25 mmol/L (450 mg/dL).

2. The temperature of the fluid used to reconstitute lyophilised control serum has been reported to affect catalytic activity.¹

3. For a more comprehensive review of factors affecting urea assays refer to the publication by Young.⁴

EXPECTED VALUES⁵

<table>
<thead>
<tr>
<th>Condition</th>
<th>Male (µkat/L)</th>
<th>Female (µkat/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>At 37°C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Males</td>
<td>≤175</td>
<td>(2.9 µkat/L)</td>
</tr>
<tr>
<td>Females</td>
<td>≤140</td>
<td>(2.3 µkat/L)</td>
</tr>
<tr>
<td>At 30°C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Males</td>
<td>≤105</td>
<td>(1.8 µkat/L)</td>
</tr>
<tr>
<td>Females</td>
<td>≤80</td>
<td>(1.3 µkat/L)</td>
</tr>
</tbody>
</table>

The quoted values are representative of the expected range for this method and should serve as a guide only. It is recommended that each laboratory verify this range or derives a reference interval for the population that it serves.⁵

PERFORMANCE DATA

The following data was obtained using the CK-NAC reagent on an automated clinical chemistry analyser.

Within Run:

<table>
<thead>
<tr>
<th>Level</th>
<th>Number of data points</th>
<th>Mean (µ/L)</th>
<th>SD (µ/L)</th>
<th>CV (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>20</td>
<td>134</td>
<td>456</td>
<td>0.34</td>
</tr>
<tr>
<td>II</td>
<td>20</td>
<td>3.40</td>
<td>4.06</td>
<td>0.89</td>
</tr>
</tbody>
</table>

Between Run:

<table>
<thead>
<tr>
<th>Level</th>
<th>Number of data points</th>
<th>Mean (µ/L)</th>
<th>SD (µ/L)</th>
<th>CV (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>20</td>
<td>132</td>
<td>428</td>
<td>0.35</td>
</tr>
<tr>
<td>II</td>
<td>20</td>
<td>3.51</td>
<td>15.24</td>
<td>0.56</td>
</tr>
</tbody>
</table>

ACCURACY:

Comparison studies were carried out using another similar commercially available CK-NAC reagent as a reference. Serum samples were assayed in parallel and the results compared by least squares regression. The following statistics were obtained:

<table>
<thead>
<tr>
<th>Number of sample pairs</th>
<th>Mean of reference method results</th>
<th>Mean of CK-NAC results</th>
<th>Slope</th>
<th>Intercept</th>
<th>Correlation coefficient</th>
</tr>
</thead>
<tbody>
<tr>
<td>60</td>
<td>141 U/L</td>
<td>140 U/L</td>
<td>0.997</td>
<td>2.5 U/L</td>
<td>0.9995</td>
</tr>
</tbody>
</table>

LINEARITY:

When run as recommended, the assay is linear to 1500 U/L.

SENSITIVITY:

When run as recommended the sensitivity of this assay is 0.30 µmol/min per U/L.

REFERENCES

© 2010 Thermo Fisher Scientific Inc. All rights reserved.