Simultaneous Analysis of Norepinephrine, Dopamine, and Serotonin in Microdialysis Perfusates Using HPLC-ECD

INTRODUCTION

The analysis of norepinephrine (NE) continues to be a problem, even more so when measured in conjunction with dopamine (DA) and serotonin (5-HT). Until now, numerous attempts to develop such a method have met with limited success. The usual approach requires use of multiple analytical systems, thereby wasting precious sample.

Neuroscientists using microdialysis perfusion continuously demand greater temporal and spatial resolution. This can be achieved by placing smaller probes in more discrete brain regions, and by increasing the sampling rate. However, the resulting low-volume and dilute samples can be challenging to analyze, requiring a highly sensitive analytical system.

Today, a single chromatographic system provides simultaneous quantitation of NE, DA, and 5-HT in a single sample. This makes more efficient use of each sample and lets researchers get information about multiple pathways in a single analysis. It also provides a superior method for NE measurement.

This work presents an example of how the method can be used to measure prefrontal cortical levels of NE, DA, and 5-HT under basal and amphetamine stimulated conditions.

EQUIPMENT AND CONDITIONS

Liquid Chromatography

An isocratic high-performance liquid chromatography (HPLC) system similar to the Thermo Scientific Dionex UltiMate® 3000 system including a pump, autosampler, and Thermo Scientific ESA Coulochem® III detector

Coulochem III Organizer Module with Temperature Control (P/N 70-9121TA)

- Column: MD160, 1.5 × 250 mm, 5 µm (P/N 70-7277)
- Mobile Phase: MD-3MA
- Flow Rate: 0.20 mL/min
- Temperature: 32 °C
- Inj. Volume: 10 µL (partial loop)

Detector

Coulochem III (P/N 70-9143)

- Analytical Cell (P/N 70-4131)
- Guard Cell (P/N 55-0417)

- Cell Potentials: Analytical Cell, E = +220 mV
 Guard Cell, EGC = +275 mV
2 Simultaneous Analysis of Norepinephrine, Dopamine, and Serotonin in Microdialysis Perfusates Using HPLC-ECD

Microdialysis

Probe: CMA11, 3 mm membrane length

Perfusion Flow Rate: 2.0 µL/min

Artificial Cerebrospinal Fluid (aCSF) Composition:

- Sodium: 147 mM
- Potassium: 2.7 mM
- Calcium: 1.2 mM
- Magnesium: 1.0 mM
- Chloride: 150 mM
- Phosphate: (pH 7.4 + 2) 2 mM

Collection Period: 20 min into 10 µL 0.2 M perchloric acid (containing 0.2 µM ascorbic acid and 0.2 µM EDTA)

Animal Model: Anesthetized rat (urethane: 1.5g/kg i.p.)

Post Surgery Recovery: 2–4 h

Probe Coordinates: AP +3.2, LR +0.8, DV –5.0 (from Bregma)

RESULTS AND DISCUSSION

This method resolved all three monoamines in under 16 min (Figure 1), showed excellent linearity (Figure 2), and extreme sensitivity (~100–150 fg on column).

Figure 1. Chromatography of NE, DA, and 5-HT standards in aCSF.

Figure 2. Linear curves for NE, DA, and 5-HT.

The method simultaneously measured all three monoamines under basal conditions, even in the urethane anesthetized animal where levels are expected to be depressed (Figure 3). Typical basal levels (uncorrected for in vitro recovery) were ~500, 250, and 160 fg/10 µL, for NE, DA, and 5-HT, respectively (data not shown).

Figure 3. Microdialysis samples obtained from a 3 mm concentric microdialysis probe placed in the prefrontal cortex of an anesthetized rat, before and after amphetamine (2 mg/kg i.p.) stimulation.
Stimulation with amphetamine (2 mg/kg i.p.) resulted in significant increases of all three monoamine neurotransmitters to ~1500, 960, and 290 fg/10 µL, for NE, DA, and 5-HT, respectively (Figure 3).

This method will be of great benefit to any researcher interested in studying the regional interplay of monoamine neurotransmitters during pharmacological manipulation or behavior.

ACKNOWLEDGEMENT

Thanks to Professors Timothy Maher and S. Phattanaruudee of the Department of Pharmaceutical Sciences, Massachusetts College of Pharmacy, Boston, MA, for providing the microdialysis samples used during this study.

REFERENCES

UltiMate and Coulonchem are registered trademarks of Dionex Corporation.