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Summary
This application note describes an HPLC-ECD method using  
a C30 stationary phase column for the analysis of isomeric forms  
of carotenoids in animal and plant tissues.    

Introduction
Much of the interest in dietary carotenoids, exclusive of 
their pro-vitamin A activity, is related to their possible 
actions as preventive agents in diseases associated with 
oxidative stress. These electron-rich compounds can act as 
antioxidants in vitro and their possible role of protection 
from reactive oxygen and nitrogen species in vivo has 
received much attention.1

Dietary carotenoids can each be found as a variable 
mixture of geometric and positional isomers (e.g., all 
trans, cis-9-, and cis-13) – See Figure 1. These isomers 
may occur naturally or can be formed during processing2 
and show a variety of biological properties and chemical 
activities. For example, β-carotene isomers exhibit 
significant differences in pro-vitamin A activity,3 tissue 
distribution4 and detector responsivity.5

Many reversed phase HPLC methods that utilize mono-
meric bonded C18 stationary phases for carotenoid 
analysis are incapable of completely separating the 
various isomers and in some instances, may lead to 
inaccurate assessment of nutritional and other health-
related properties.6,7,8 HPLC methods that utilize a 
silica-based C30 stationary phase specifically designed for 
carotenoid separations have shown significant, and often 
superior, overall enhancement in shape selectivity for a 
variety of carotenoid isomers.5,6,7 Photodiode array (PDA) 
detection in combination with C30 separations represents 
an extremely useful technique for carotenoid analysis. 
This approach, however, has limited sensitivity when 
analyzing the lower levels present in serum and animal 

tissue, particularly for the less abundant isomers.7 
Electrochemical detection (ECD) is a highly sensitive form 
of HPLC detection for lipid soluble vitamins and antioxi-
dants.9,10,11 The coulometric array is a multichannel form 
of electrochemical detection that allows resolution of 
compounds based on differences in voltammetric behavior 
and qualitative characterization of peaks even at trace 
levels.12,13,14 The basis of detection and resolution using 
coulometric array relates to differences between analytes 
in their ability to delocalize charge. Since the antioxidant 
properties of a compound are closely related to these same 
structural characteristics, the application of coulometric 
array detection to carotenoid analysis may provide some 
additional biochemical insight.15

This application note examines the use of coulometric 
array detection with HPLC using a C30 stationary phase 
for analysis of isomeric forms of carotenoids in animal 
and plant tissues. HPLC coulometric array ECD can be 
used both as a complementary approach to traditional 
methods and to provide unique information on 
carotenoids. 
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Materials and Methods
The isocratic analytical system consisted of a pump, an 
autosampler, a thermostatic chamber, a twelve-channel 
Thermo Scientific™ Dionex™ CoulArray™ Coulometric 
Array Detector and a UV/vis detector placed prior to  
the array.

Conditions

LC

Column: C30, 5 µm, 4.6 × 250 mm

Mobile Phase: Methanol – Methyl-ter t-butyl Ether (MTBE)  
 – 1.0M Ammonium Acetate, pH 4.4   
 (63:35:2) (v/v/v)

Flow Rate: 1.0 mL/min

Temperature: 28 °C

Injection Volume: 10 µL

Detector  

Electrochemical Detector: Model 5600A, CoulArray

Applied Potentials: 100, 160, 220, 280, 340, 400, 460 and   
 520 mV vs. Pd.  

Detector Wavelength: 450 nm

Standards
Standards were prepared by dissolving ~1 mg/10 mL 
chloroform followed by dilution in 10 mL ethanol. 
Solutions were assayed spectrophotometrically and 
assigned a concentration value based on molar 
absorbtivity. Butylated hydroxyanisole was then added  
as a preservative. Dilutions were made in mobile phase.

Sample Preparation
A 0.5 mL volume of serum or standard was mixed with 
0.5 mL ethanol/10 mg/L BHA. After mixing for 1 min, 
1.5 mL of hexane was added and after mixing for an 
additional 10 min. was centrifuged (4,000 rpm, 10 min). 
Approximately 1.0 mL of supernatant was withdrawn 
and the remaining sample extracted with an additional 
1.5 mL of hexane. Combined hexane extracts were 
evaporated to dryness under a stream of nitrogen. Finally, 
the residue was dissolved in 0.25 mL of mobile phase. 

Results and Discussion
The separation of carotenoid isomers was completed 
within 25 minutes (Figure 2). For coulometric array ECD, 
the assay was linear over the range of 0.1 to 500ng on 
column. The limit of detection (lod) was ~20 pg (s/n 3:1) 
for both trans-α-carotene and trans-β-carotene; a twenty 
fold improvement over UV detection. The within-run 
peak height response variability (% relative standard 
deviation, %R.S.D.) was 0.42 and 0.45 for 10ng of 
trans-α and trans-β-carotene, respectively (n=8). For  
200 pg, an amount well below the LOD for absorbance 
detection, EC response variability was 3.57 and 6.45 
%R.S.D. for trans-α and trans-β-carotene, respectively 
(n=7).  

Figure 1. The structure of α- and ß-carotene and two geomrtic isomers of 
ß-Carotene.

Figure 2. Analysis of a raw carrot extract. 
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3Figure 3 illustrates HPLC-coulometric array profiles of 
MTBE extracts of a raw (Figure 3A) and a thermally 
processed carrot (Figure 3B). Peak elution profiles are 
similar to those commonly obtained using absorbance 
detection where isomeric forms of α- and β-carotene are 
apparent as a result of thermal processing. Figure 4 shows 
a representative chromatogram of a human serum extract. 
Levels of trans isomers, estimated using external 
standards, showed good agreement between EC and 
absorbance (±3%). The output from 4 electrochemical 
channels (to illustrate voltammetric response ratios) along 
with absorbance at 450 nm are shown. Response ratios 
between adjacent channels when compared to those 
obtained from standards (Figure 2) are in close agreement. 
This is indicative of high peak purity for both trans-α  
and trans-β-carotene. The chromatogram in Figure 4 
illustrates the ability to obtain useful qualitative 
information on low level analytes in a complex matrix. 
While the ability to detect and obtain spectral absorbance 
information is very limited, the EC response for a number 
of putative isomers is well above the lower limit of 
detection.

It is interesting to note that in Figures 3 and 4 the 
predominant EC response is obtained at 340mV for 
trans-β-carotene and 400 mV for trans-α-carotene  
(i.e. trans-β-carotene is more easily oxidized due to more 
effective hyper-conjugation). Furthermore, a peak eluting 
immediately prior to trans-α-carotene, which can be 
tentatively identified as 13-cis-β-carotene, has dominant 
response at the same channel as trans-β-carotene.7 Other 
possible cis isomers, based on literature, may include the 
two unresolved peaks immediately prior to ‘13-cis-β-
carotene’ and possibly the 9-cis-β-carotene which elutes 
immediately after β-carotene.7 This latter peak has an 
unique voltammetric profile with dominant response  
at 460 mV.

Conclusion
In conclusion, HPLC with a silica-based C30 stationary 
phase in combination with coulometric array electro-
chemical detection allowed selective measurement of 
carotenoids with an estimated 20-fold improvement  
in sensitivity (lod ca. 20 pg) as compared to UV-Vis 
absorbance detection. Response was linear over a 0.1 to 
500 ng range. Qualitative voltammetric data obtained 
across serial coulometric sensors was used to aid in peak 
identification and provide information on the oxidation-
reduction properties of analytes. The feasibility of 
detection and qualitative analysis of trace levels of cis 
isomeric forms of α and β-carotene in human serum has 
been demonstrated. This approach has recently been 
applied to measurement of isomeric forms of carotenoids 
in tissue.16 

Figure 3. Analysis of a thermally processed carrot. (*tentative indentification).
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Figure 4. Low level serum.
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