thermo scientific

Optimized GC-MS solution for semivolatiles (SVOC) analysis in environmental samples in compliance with the U.S. EPA Method 8270D

Authors

Richard Law,¹ Cristian Cojocariu,¹ Daniela Cavagnino²

¹Thermo Fisher Scientific, Runcorn, UK

²Thermo Fisher Scientific, Milan, Italy

Keywords

GC-MS, Semivolatiles, Helium Saver, ISQ 7000, ExtractaBrite, EPA 8270, SVOC, SVOA, semivolatile organic compound, BNA, base neutral acids, organic contaminants

Introduction

The United States Environmental Protection Agency (U.S. EPA) released the first Semivolatile Organic Compounds (SVOC) method by Gas Chromatography/Mass Spectrometry (Method 8270) at the end of 1980. It is a common method used in almost all environmental laboratories looking to analyze semivolatile organic compounds in extracts prepared from many types of solid waste matrices, soils, air sampling media, and water.¹ Since then, single quadrupole mass spectrometers have become much more sensitive and the source fragmentation has changed. Many original assumptions² about the origin and nature of the ion species have proven to be wrong or require correction, while the new generations of the mass spectrometers have proven to provide more response in the high-mass region,³ resulting in adjustment of the tuning criteria to be met.⁴ To adjust to these changes, the EPA has changed the ion abundance criteria for the passing of DFTPP ion ratio criteria in EPA Method 8270D.

This application note shows how the Thermo Scientific[™] ISQ[™] 7000 single quadrupole GC-MS system can meet Method 8270D requirements with the extended dynamic range detection system. The working method range was shown to be 0.2–200 ppm using the same column.

APPLICATION NOTE 10522

Particular attention has been posed on maximizing the uptime of the instrument, as required by high-throughput laboratories. The innovative Thermo Scientific[™] NeverVent[™] technology available on the ISQ 7000 GC-MS system is a unique solution for speeding up the routine maintenance operations, saving the time typically required to vent the MS system and re-establish the vacuum conditions.

The new Thermo Scientific[™] Instant Connect Helium Saver Injector was also assessed in this application note to show that significant financial costs savings can be realized throughout the lifetime of a GC-MS instrument without compromising the instrument's performance.

Experimental

The method was tested on five ISQ 7000 GC-MS systems equipped with the Thermo Scientific[™] ExtractaBrite[™] ion source to assess method transferability and instrument-

Table 1a. TRACE 1310 GC system parameters for splitless method.

Injection Volume (µL)	1.0
Liner	Deactivated Splitless Liner
Inlet Temp (°C)	270
Inlet Module and Mode	SSL in Surge Splitless at 345 kPa for 0.6 min
Splitess Time (min)	0.6
Split Flow (mL/min)	50
Oven Tempe	rature Program
Initial Temperature 1 (°C)	35
Hold Time (min)	2.25
Rate (°C/min)	25
Temperature 2 (°C)	100
Hold Time (min)	0.1
Rate (°C/min)	30
Temperature 3 (°C)	280
Hold Time (min)	0.1
Rate (°C/min)	10
Temperature 4 (°C)	320
Hold Time (min)	5.00

to-instrument variability. Both ranges (0.2-50 ppm and 2–200 ppm) were validated using the Instant Connect Helium Saver Injector (P/N 19070013) and the Thermo Scientific[™] Instant Connect Split-Splitless (SSL) Injector module (P/N 19070010). The column used was a Thermo Scientific[™] TraceGOLD[™] TG-5MS GC Column with 5 m guard, 30 m × 0.25 mm × 0.25 µm (P/N 26098-1425). A Thermo Scientific[™] Injection Port Deactivated Liner 4 mm ID × 105 mm (P/N 453A1925) was selected for the Split-Splitless injection port. The ISQ 7000 GC-MS system operated in full-scan mode and the Thermo Scientific[™] Chromeleon[™] Chromatography Data System (CDS) software was used to acquire, process, and report data. The operating parameters for the Thermo Scientific[™] TRACE[™] 1310 GC system are reported in Table 1a (splitless method, range 0.2-50 ppm) and Table 1b (split method, range 2–200 ppm). The ISQ 7000 single guadrupole MS operating conditions are detailed in Tables 2a and 2b.

Table 1b. TRACE 1310 GC system parameters for split method.

Injection Volume (µL)	1.0
Liner	Deactivated Splitless Liner
Inlet Temp (°C)	310
Inlet Module and Mode	SSL in Split Mode
Split Ratio	10:1
Split Flow (mL/min)	15
Carrier Gas (mL/min)	He, 1.5
Oven Tempe	rature Program
Initial Temperature 1 (°C)	35
Hold Time (min)	2.25
Rate (°C/min)	25
Temperature 2 (°C)	100
Hold Time (min)	0.1
Rate (°C/min)	30
Temperature 3 (°C)	280
Hold Time (min)	0.1
Rate (°C/min)	10
Temperature 4 (°C)	320
Hold Time (min)	5.00

Table 2a. ISQ 7000 Single Quadrupole MS parameters for splitless method.

Transfer Line Temp (°C)	300
Ion Source	ExtractaBrite
Ion Source Temp (°C)	300
Ionization Mode	El
Electron Energy (eV)	70
Acquisition Mode	Full-scan
Scan Range (<i>m/z</i>)	35–500
Emission Current (mA)	10
Dwell Time	0.1

Table 2b. ISQ 7000 Single Quadrupole MS parameters for split method.

Transfer Line Temp (°C)	310
Ion Source	ExtractaBrite
Ion Source Temp (°C)	300
Ionization Mode	El
Electron Energy (eV)	70
Acquisition Mode	Full-scan
Scan Range (m/z)	35–500
Emission Current (mA)	15
Dwell Time	0.1

Tuning for DFTPP

The ISQ 7000 MS system was tuned with a built-in EPA 8270D specifically designed tune (DFTPP Tune). This assures fulfillment of all method requirements in terms of ion abundance criteria. A tune verification DFTPP solution was injected to verify that the ISQ 7000 GC-MS system met the tuning requirements shown in Figure 1. Chromeleon CDS software has a dedicated reporting package for environmental laboratories, and automatically reports tune evaluation performance with a Pass/Fail indicator (Table 3).

Standard and sample preparation

Standards (Restek 8270 MegaMix Cat. No. 31850, AccuStandard Internal Standard Cat. No. Z-014J, AccuStandard Surrogate Cat No. M-8270-SS) were prepared in methylene chloride, and the internal standards were spiked at a concentration of 5 ppm for both the splitless and split methods. Spiking the range of 0.2 to 200 ppm with the same concentration of internal standards eliminated the necessity of preparing two different sets of calibration standards. Table 4 contains the calibration levels of both methods.

A volume of 1 μ L of the calibration standards was injected for all methods. Figure 2 shows the chromatogram of the 5 ppm calibration standard acquired in splitless mode.

Figure 1. Acquired DFTTP mass spectrum using the ISQ 7000 single quadrupole GC-MS system operated in full-scan at 70 eV ionization energy.

Table 3. DFTPP spectrum check for ion abundance criteria.

Eval Mass (<i>m/z</i>)	Ion Abundance Criteria	Measured % Relative Abundance	Criteria Pass/ Fail
51	Greater than or equal to 10% AND less than or equal to 80% of Base Peak	20.7	Pass
68	Less than 2% of <i>m</i> /z 69	0.7	Pass
70	Less than 2% of <i>m</i> /z 69	0.5	Pass
127	Greater than or equal to 10% AND less than or equal to 80% of Base Peak	29.4	Pass
197	Less than 2% of <i>m</i> /z 198	0.1	Pass
198	Greater than 50% AND less than or equal to 100% of Base Peak	57.5	Pass
199	Greater than or equal to 5% AND less than or equal to 9% of m/z 198	5.9	Pass
275	Greater than or equal to 10% AND less than or equal to 60% of Base Peak	17.2	Pass
365	Greater than 1% of <i>m</i> /z 198	4.6	Pass
441	Greater than 0% AND less than 24% of m/z 442	17.4	Pass
442	Greater than 50% AND less than or equal to 100% of Base Peak	100.0	Pass
443	Greater than or equal to 15% AND less than or equal to 24% of m/z 442	18.1	Pass

Table 4. Calibration standards used for testing the splitless and split methods.

Calibration Standard	Splitless Conc. (ppm)	Split Conc. (ppm)
Cal 1	0.2	2.0
Cal 2	0.5	5.0
Cal 3	1.0	10.0
Cal 4	2.0	20.0
Cal 5	5.0	35.0
Cal 6	10.0	50.0
Cal 7	20.0	100.0
Cal 8	35.0	200.0
Cal 9	50.0	_

Figure 2. Total ion current (TIC) chromatogram of the 5 ppm EPA 8270 semivolatile calibration standard injected in splitless mode.

Results and discussion

Splitless method 0.2–50 ppm calibration

The average relative response factors of the 76 targeted compounds and six surrogates were calculated by analyzing the nine calibration standards from 0.2 ppm to 50 ppm in methylene chloride. Six compounds had Response Factors %RSD >20% and required an alternative curve fit. The %RSDs of those compounds calibrated using average response factors and r^2 values for the six alternative fit compounds are shown in Table 5.

Split method 2–200 ppm calibration

The average response factors of the 76 targeted compounds and six surrogates were calculated by analyzing eight calibration standards with concentrations ranging from 2 ppm to 200 ppm prepared in methylene chloride. Seven compounds had Response Factors %RSD >20% and required an alternate curve fit. The %RSDs of those compounds calibrated using average response factors and r² values for the seven alternative fit compounds are shown in Table 6.

Instant Connect Helium Saver module

Method 8270D was also tested with the Instant Connect Helium Saver module (P/N 19070013). Depending on the experimental conditions, the Helium Saver module allows up to 14 years of GC and GC-MS operation from a single helium cylinder. The inlet is supplied with two different gases: nitrogen is used for the septum purge and split flows with only helium supplying the analytical column. Because of this innovative and patented solution, helium consumption is dramatically reduced.

After time for equilibration, the GC-MS tuning mixture was injected and passed the criteria for EPA Method 8270D. Standards for a calibration curve (0.2–50 ppm and 2–200 ppm) were injected, and the data processed. Table 7a shows the results for splitless method and Table 7b reports split method. In both configurations (SSL and Helium Saver) and for both methods (split and splitless), less than 10% of compounds required an alternative curve fit. All the others had RSD% less than 20% with linear fit.

Minimum response factors

EPA Method 8270D requires a minimum relative response factor (RRF) for any point of the calibration curve for several compounds in the targeted list. Table 8 presents those minimum relative response factor requirements and the minimum RRF across all curves performed on the ISQ 7000 single quadrupole GC-MS system.

Retention times

The four methods: splitless, splitless with Helium Saver, split, and split with Helium Saver, were developed over a period of three weeks. Table 9 demonstrates the stability of the retention times over this period of time. During this time, the liner and septa were changed and the analytical column trimmed. Still, the retention times are reproducible using different methods and different inlet modules. Table 9 shows a comparison of the retention times obtained using different methods and inlet modules.

NeverVent technology

Specifically designed to simplify the routine maintenance procedures and to maximize the GC-MS instrument uptime, the proprietary Vacuum Probe Interlock (VPI) and the V-lock solution available on the ISQ 7000 single guadrupole GC-MS system allow ion source cleaning or column replacement to be performed quickly without breaking the MS vacuum, saving up to 98% of the time typically required to perform those operations. Thanks to the VPI, the ion source can be fully removed-including all of the lenses and the repeller-through the front vacuum interlock, without venting the system. This allows cleaning the source, swapping it, or changing ionization type, and being ready to run samples within minutes, not hours or days. Additionally, the V-lock technology allows the MS under vacuum to be fully isolated from the GC system, permitting not only a guick replacement of the analytical column when necessary, but also guick and safe performance of regular maintenance at the injector side, like replacing the septum or the liner or trimming the analytical column, without the use of any additional postcolumn or auxiliary gas flow into the MS.

Table 5. Response factors %RSDs as well as coefficient of determination values (r²) determined from the calibration curve acquired over a concentration range of 0.2–50 ppm (splitless injections).

Compound	%RSD	r²	Compound	%RSD	r²
N-Nitrosodimethylamine	11.53	—	Acenaphthylene	8.24	_
Pyridine	10.23	—	1,2-Dinitrobenzene	14.85	—
2-fluorophenol (surrogate)	5.57	_	3-Nitroaniline	8.09	_
Phenol-d6 (surrogate)	4.99	—	Acenaphthene-d10	5.78	—
Aniline	6.39	_	Acenaphthene	7.57	_
Phenol	7.30	—	2,4-dinitrophenol	—	0.9867
Bis (2-chloroethyl) ether	7.95	_	Phenol, 4-nitro-	18.15	_
Phenol, 2-chloro-	6.19	—	Dibenzofuran	6.78	—
Benzene, 1,3-dichloro-	6.29	_	2,4-dinitrotoluene	12.32	_
1,4-Dichlorobenzene-d4	4.90	_	Phenol, 2,3,5,6-tetrachloro-	_	0.9957
Benzene, 1,4-dichloro-	7.57	_	Phenol, 2,3,4,6-tetrachloro-	_	0.9965
Benzyl alcohol	7.33	_	Diethyl Phthalate	5.60	_
Benzene, 1,2-dichloro-	7.43	_	4-chlorophenylphenylether	6.50	_
Phenol, 2-methyl-	6.27	_	Fluorene	7.31	_
Bis (2-chloroisopropyl) ether	6.31	_	4-nitroaniline	7.88	_
Phenol, 3&4-methyl-	6.52	_	4,6-Dinitro-2-methylphenol	_	0.9945
N-Nitroso-di-n-propylamine	6.63	_	Diphenylamine	9.61	_
Ethane, hexachloro-	5.80	_	Azobenzene	7.06	_
Nitrobenzene-D5 (surrogate)	5.90	_	2,4,6-tribromophenol (surrogate)	_	0.9963
Benzene, nitro-	3.20	—	4-bromophenylphenylether	4.30	—
Isophorone	3.90	_	Hexachlorobenzene	8.18	_
Phenol, 2-nitro-	13.14	_	Phenol, pentachloro-	_	0.9960
Phenol, 2,4-dimethyl-	4.52	_	Phenanthrene	10.88	_
Bis (2-chloroethoxy) methane	5.17	_	Phenanthrene-d10-	3.54	_
Phenol, 2,4-dichloro-	4.76	—	Anthracene	11.38	_
Benzene, 1,2,4-trichloro-	6.17	_	Carbazole	9.69	—
Naphthalene	8.26	—	Di-n-butyl phthalate	8.10	_
Naphthalene-d8	5.02	—	Fluoranthene	10.94	—
p-Chloroaniline	4.95	_	Pyrene	10.68	_
1,3-Butadiene, 1,1,2,3,4,4-hexachloro-	5.36	—	p-Terphenyl-d14 (surrogate)	6.76	—
Phenol, 4-chloro-3-methyl-	4.14	—	Benzyl butyl phthalate	8.69	—
Naphthalene, 2-methyl	7.54	—	Bis (2-ethylhexyl) adipate	6.08	_
Naphthalene, 1-methyl-	7.00	—	Benz[a]anthracene	9.68	—
Hexachlorocyclopentadiene	9.80	—	Chrysene	9.38	—
Phenol, 2,4,5-trichloro-	8.21	—	Chrysene-d12	4.02	—
Phenol, 2,4,6-trichloro-	5.90	—	Bis (2-ethylhexyl) phthalate	7.42	—
2-fluorobiphenyl (surrogate)	4.99	—	Di-n-octylphthalate	6.30	—
Naphthalene, 2-chloro-	7.24	—	Benzo[b]fluoranthene	6.70	—
2-Nitroaniline	10.43	—	Benzo[k]fluoranthene	8.48	—
1,4-Dinitrobenzene	16.05	—	Benzo[a]pyrene	6.11	—
Dimethyl phthalate	5.66	—	Perylene-d12	5.73	—
Benzene, 1,3-dinitro-	13.75	—	Indeno[1,2,3-cd]pyrene	6.36	—
2,6-dinitrotoluene	6.11	—	Dibenzo[a,h]anthracene	6.39	_
			Benzo[g,h,i]perylene	7.75	_

Table 6. Response factors %RSDs as well as coefficient of determination values (r²) determined from the calibration curve acquired over a concentration range of 0.2–200 ppm (10:1 split injections).

Compound	%RSD	r²	Compound	%RSD	r²
N-Nitrosodimethylamine	6.31	_	Acenaphthylene	6.59	
Pyridine	10.80	_	1,2-Dinitrobenzene	15.11	
2-fluorophenol (surrogate)	4.30	_	3-Nitroaniline	14.42	_
Phenol-d6 (surrogate)	4.19	_	Acenaphthene-d10	7.23	_
Aniline	4.89	_	Acenaphthene	7.98	_
Phenol	5.48	_	2,4-dinitrophenol	—	0.9984
Bis (2-chloroethyl) ether	4.45	_	Phenol, 4-nitro-	_	0.9982
Phenol, 2-chloro-	4.94	_	Dibenzofuran	8.91	_
Benzene, 1,3-dichloro-	5.03	_	2,4-dinitrotoluene	18.65	_
1,4-Dichlorobenzene-d4	6.01	_	Phenol, 2,3,5,6-tetrachloro-	17.58	
Benzene, 1,4-dichloro-	5.09	_	Phenol, 2,3,4,6-tetrachloro-	12.33	_
Benzyl alcohol	9.21	_	Diethyl Phthalate	7.83	_
Benzene, 1,2-dichloro-	4.76	_	4-chlorophenylphenylether	7.93	_
Phenol, 2-methyl-	6.77	_	Fluorene	9.13	_
Bis (2-chloroisopropyl) ether	4.85	_	4-nitroaniline	13.30	_
Phenol, 3&4-methyl-	5.92	_	4,6-Dinitro-2-methylphenol	-	0.9983
N-Nitroso-di-n-propylamine	6.23	_	Diphenylamine	8.13	_
Ethane, hexachloro-	4.85	_	Azobenzene	9.24	_
Nitrobenzene-D5 (surrogate)	10.59	_	2,4,6-tribromophenol (surrogate)	13.23	_
Benzene, nitro-	10.24	_	4-bromophenylphenylether	6.37	_
Isophorone	5.18	_	Hexachlorobenzene	5.72	_
Phenol, 2-nitro-	19.20	_	Phenol, pentachloro-	—	0.9981
Phenol, 2,4-dimethyl-	4.92	_	Phenanthrene	6.32	_
Bis (2-chloroethoxy) methane	8.67	_	Phenanthrene-d10-	6.95	_
Phenol, 2,4-dichloro-	5.68	_	Anthracene	7.23	_
Benzene, 1,2,4-trichloro-	5.74	_	Carbazole	11.25	_
Naphthalene	5.74	_	Di-n-butyl phthalate	6.69	_
Naphthalene-d8	6.53	_	Fluoranthene	7.64	
p-Chloroaniline	6.02	_	Pyrene	6.93	_
1,3-Butadiene, 1,1,2,3,4,4-hexachloro-	5.54	_	p-Terphenyl-d14 (surrogate)	6.38	_
Phenol, 4-chloro-3-methyl-	8.26	_	Benzyl butyl phthalate	6.97	_
Naphthalene, 2-methyl	6.97	—	Bis(2-ethylhexyl)adipate	6.16	_
Naphthalene, 1-methyl-	7.35	_	Benz[a]anthracene	7.43	_
Hexachlorocyclopentadiene	—	0.9991	Chrysene	6.17	—
Phenol, 2,4,5-trichloro-	10.39	_	Chrysene-d12	10.49	—
Phenol, 2,4,6-trichloro-	7.92	—	Bis (2-ethylhexyl) phthalate	4.95	—
2-fluorobiphenyl (surrogate)	6.45	_	Di-n-octylphthalate	8.70	_
Naphthalene, 2-chloro-	8.16	—	Benzo[b]fluoranthene	7.06	—
2-Nitroaniline	17.03	_	Benzo[k]fluoranthene	6.26	_
1,4-Dinitrobenzene	—	0.9980	benzo[a]pyrene	6.81	_
Dimethyl phthalate	8.30	_	Perylene-d12	14.99	_
Benzene, 1,3-dinitro-	_	0.9976	Indeno[1,2,3-cd]pyrene	6.15	_
2,6-dinitrotoluene	11.55	_	Dibenzo[a,h]anthracene	6.91	_
			Benzo[g,h,i]perylene	7.06	_

Table 7a. Response factors %RSDs for the 76 targeted compounds and internal standards, as well as r^2 , for alternative fit calibrations using the Instant Connect Helium Saver module in splitless mode.

Compound	%RSD	r²	Compound	%RSD	r²
N-Nitrosodimethylamine	6.62	—	Acenaphthylene	7.34	_
Pyridine	10.56	—	1,2-Dinitrobenzene	16.57	_
2-fluorophenol (surrogate)	6.37	_	3-Nitroaniline	19.06	_
Phenol-d6 (surrogate)	4.82	_	Acenaphthene-d10	3.99	_
Aniline	13.52	_	Acenaphthene	4.68	_
Phenol	5.41	—	2,4-dinitrophenol	_	0.9938
Bis(2-chloroethyl) ether	17.24	_	Phenol, 4-nitro-	_	0.9950
Phenol, 2-chloro-	6.34	_	Dibenzofuran	6.21	_
Benzene, 1,3-dichloro-	5.80	_	2,4-dinitrotoluene	_	0.9942
1,4-Dichlorobenzene-d4	2.53	_	Phenol, 2,3,5,6-tetrachloro-	—	0.9962
Benzene, 1,4-dichloro-	5.17	_	Phenol, 2,3,4,6-tetrachloro-	14.62	_
Benzyl alcohol	18.38	_	Diethyl Phthalate	5.69	_
Benzene, 1,2-dichloro-	5.36	_	4-chlorophenylphenylether	5.32	_
Phenol, 2-methyl-	6.17	_	Fluorene	9.43	_
Bis(2-chloroisopropyl)ether	4.53	_	4-nitroaniline	19.69	_
Phenol, 3&4-methyl-	7.17	_	4,6-Dinitro-2-methylphenol	—	0.9893
N-Nitroso-di-n-propylamine	7.58	_	Diphenylamine	6.12	_
Ethane, hexachloro-	6.39	—	Azobenzene	6.01	_
Nitrobenzene-D5 (surrogate)	8.67	_	2,4,6-tribromophenol (surrogate)	16.16	_
Benzene, nitro-	8.86	_	4-bromophenylphenylether	8.54	_
Isophorone	5.52	_	Hexachlorobenzene	5.49	_
Phenol, 2-nitro-	17.07	_	Phenol, pentachloro-	—	0.9971
Phenol, 2,4-dimethyl-	8.44	_	Phenanthrene	7.12	_
Bis(2-chloroethoxy)methane	8.87	_	Phenanthrene-d10-	2.95	—
Phenol, 2,4-dichloro-	8.56	_	Anthracene	12.18	_
Benzene, 1,2,4-trichloro-	5.36	—	Carbazole	6.86	—
Naphthalene	5.91	_	Di-n-butyl phthalate	6.59	_
Naphthalene-d8	2.41	_	Fluoranthene	8.46	_
p-Chloroaniline	5.82	_	Pyrene	7.82	_
1,3-Butadiene, 1,1,2,3,4,4-hexachloro-	4.82	_	p-Terphenyl-d14 (surrogate)	7.49	_
Phenol, 4-chloro-3-methyl-	8.96	_	Benzyl butyl phthalate	5.81	_
Naphthalene, 2-methyl	5.95	—	Bis(2-ethylhexyl)adipate	9.11	—
Naphthalene, 1-methyl-	6.54	_	Benz[a]anthracene	5.79	_
Hexachlorocyclopentadiene	—	0.9959	Chrysene	6.90	—
Phenol, 2,4,5-trichloro-	13.52	—	Chrysene-d12	4.59	—
Phenol, 2,4,6-trichloro-	9.81	—	Bis(2-ethylhexyl)phthalate	7.06	—
2-fluorobiphenyl,(surrogate)	6.00	—	Di-n-octylphthalate	7.84	—
Naphthalene, 2-chloro-	5.66	—	Benzo[b]fluoranthene	8.98	—
2-Nitroaniline	17.31	—	Benzo[k]fluoranthene	11.28	—
1,4-Dinitrobenzene	—	0.9962	Benzo[a]pyrene	7.47	—
Dimethyl phthalate	5.88	—	Perylene-d12	5.38	—
Benzene, 1,3-dinitro-	17.90	—	Indeno[1,2,3-cd]pyrene	8.02	—
2,6-dinitrotoluene	11.80	—	Dibenzo[a,h]anthracene	5.99	—
			Benzo[q,h,i]perylene	7.43	_

Table 7b. Response factors %RSDs for the 76 targeted compounds and internal standards, as well as r², for alternative fit calibrations using the Instant Connect Helium Saver module in split mode.

Compound	%RSD	r²	Compound	%RSD	r²
N-Nitrosodimethylamine	6.62	—	Acenaphthylene	7.25	_
Pyridine	13.09	—	1,2-Dinitrobenzene	17.76	—
2-fluorophenol (surrogate)	6.02	_	3-Nitroaniline	18.05	_
Phenol-d6 (surrogate)	5.71	—	Acenaphthene-d10	4.15	—
Aniline	6.13	_	Acenaphthene	7.36	_
Phenol	6.52	—	2,4-dinitrophenol	_	0.9965
Bis(2-chloroethyl) ether	5.69	_	Phenol, 4-nitro-	_	0.9978
Phenol, 2-chloro-	7.17	—	Dibenzofuran	6.90	_
Benzene, 1,3-dichloro-	7.28	_	2,4-dinitrotoluene	18.32	_
1,4-Dichlorobenzene-d4	3.26	_	Phenol, 2,3,5,6-tetrachloro-	_	0.9957
Benzene, 1,4-dichloro-	8.13	_	Phenol, 2,3,4,6-tetrachloro-	17.05	_
Benzyl alcohol	14.15	—	Diethyl Phthalate	6.09	—
Benzene, 1,2-dichloro-	6.95	_	4-chlorophenylphenylether	8.11	_
Phenol, 2-methyl-	6.68	—	Fluorene	8.51	_
Bis(2-chloroisopropyl)ether	6.28	_	4-nitroaniline	19.17	_
Phenol, 3&4-methyl-	6.42	—	4,6-Dinitro-2-methylphenol	_	0.9987
N-Nitroso-di-n-propylamine	7.31	_	Diphenylamine	7.24	_
Ethane, hexachloro-	9.32	—	Azobenzene	7.28	—
Nitrobenzene-D5 (surrogate)	10.02	_	2,4,6-tribromophenol (surrogate)	14.93	_
Benzene, nitro-	11.59	_	4-bromophenylphenylether	7.06	_
Isophorone	6.70	_	Hexachlorobenzene	7.82	_
Phenol, 2-nitro-	14.78	—	Phenol, pentachloro-	_	0.9991
Phenol, 2,4-dimethyl-	5.90	_	Phenanthrene	8.55	_
Bis(2-chloroethoxy)methane	5.64	—	Phenanthrene-d10-	3.85	—
Phenol, 2,4-dichloro-	5.96	_	Anthracene	6.87	_
Benzene, 1,2,4-trichloro-	6.67	_	Carbazole	8.99	—
Naphthalene	4.81	_	Di-n-butyl phthalate	7.05	_
Naphthalene-d8	3.84	—	Fluoranthene	7.25	—
p-Chloroaniline	5.55	_	Pyrene	6.05	_
1,3-Butadiene, 1,1,2,3,4,4-hexachloro-	7.15	—	p-Terphenyl-d14 (surrogate)	6.25	—
Phenol, 4-chloro-3-methyl-	7.32	_	Benzyl butyl phthalate	5.92	_
Naphthalene, 2-methyl	5.92	—	Bis(2-ethylhexyl)adipate	6.32	_
Naphthalene, 1-methyl-	6.15	_	Benz[a]anthracene	7.37	_
Hexachlorocyclopentadiene	_	0.9985	Chrysene	6.90	_
Phenol, 2,4,5-trichloro-	12.06	_	Chrysene-d12	4.81	_
Phenol, 2,4,6-trichloro-	12.35	—	bis(2-ethylhexyl)phthalate	6.27	_
2-fluorobiphenyl (surrogate)	7.30	_	di-n-octylphthalate	6.56	_
Naphthalene, 2-chloro-	7.68	—	Benzo[b]fluoranthene	6.55	—
2-Nitroaniline	17.72	_	Benzo[k]fluoranthene	9.18	_
1,4-Dinitrobenzene	19.53	—	benzo[a]pyrene	7.40	—
Dimethyl phthalate	7.46	_	Perylene-d12	8.17	_
Benzene, 1,3-dinitro-	18.89	—	Indeno[1,2,3-cd]pyrene	8.23	—
2,6-dinitrotoluene	13.59	_	dibenzo[a,h]anthracene	7.15	_
			Benzola,h.ilpervlene	6.50	_

Table 8 (Part 1). EPA Method 8270D minimum relative response factors and those produced by the ISQ 7000 single quadrupole system.

		Therm	o Minimum	Thermo Minimum		
Compound	Minimum Response	Splitless	Splitless Helium Saver	Split (10:1)	Split Helium Saver	
Phenol	0.8	1.990	2.895	2.603	2.767	
Bis(2-chloroethyl) ether	0.7	1.499	2.225	1.929	2.134	
Phenol, 2-chloro-	0.8	1.516	1.884	1.882	1.869	
Phenol, 2-methyl-	0.7	1.412	1.802	1.719	1.771	
Phenol, 3&4-methyl-	0.6	1.495	1.933	1.767	1.897	
N-Nitroso-di-n-propylamine	0.5	1.110	1.886	1.254	1.579	
Ethane, hexachloro-	0.3	0.530	0.439	0.716	0.690	
Benzene, nitro-	0.2	0.316	0.469	0.404	0.471	
Isophorone	0.4	0.708	0.989	0.869	0.995	
Phenol, 2-nitro-	0.1	0.160	0.170	0.152	0.157	
Phenol, 2,4-dimethyl-	0.2	0.389	0.453	0.430	0.465	
Bis(2-chloroethoxy)methane	0.3	0.432	0.589	0.530	0.586	
Phenol, 2,4-dichloro-	0.2	0.282	0.269	0.313	0.288	
Naphthalene	0.7	1.085	1.247	1.176	1.260	
p-Chloroaniline	0.01	0.464	0.493	0.497	0.546	
1,3-Butadiene, 1,1,2,3,4,4-hexachloro-	0.01	0.112	0.118	0.175	0.116	
Phenol, 4-chloro-3-methyl-	0.2	0.342	0.394	0.382	0.418	
Naphthalene, 2-methyl	0.4	0.785	0.730	0.726	0.724	
Hexachlorocyclopentadiene	0.05	0.236	0.128	0.213	0.044	
Phenol, 2,4,6-trichloro-	0.2	0.345	0.322	0.372	0.298	
Phenol, 2,4,5-trichloro-	0.2	0.324	0.286	0.368	0.300	
Naphthalene, 2-chloro-	0.8	1.232	1.388	1.314	1.349	
2-Nitroaniline	0.01	0.335	0.406	0.339	0.455	
Dimethyl phthalate	0.01	1.361	1.511	1.442	1.482	
2,6-dinitrotoluene	0.2	0.229	0.259	0.258	0.242	
Acenaphthylene	0.9	1.899	2.216	2.063	2.165	
3-Nitroaniline	0.01	0.298	0.336	0.428	0.541	
2,4-dinitrophenol	0.01	0.055	0.042	0.045	0.025	
Acenaphthene	0.9	1.312	1.574	1.383	1.417	

Table 8 (Part 2). EPA Method 8270D minimum relative response factors and those produced by the ISQ 7000 single quadrupole system.

		Thermo	o Minimum	Thermo Minimum		
Compound	Minimum Response	Splitless	Splitless Helium Saver	Split (10:1)	Split Helium Saver	
2,4-dinitrotoluene	0.2	0.304	0.327	0.316	0.330	
Dibenzofuran	0.8	1.840	1.907	1.811	1.863	
Phenol, 4-nitro-	0.01	0.167	0.042	0.124	0.055	
Diethyl Phthalate	0.01	1.335	1.676	1.508	1.518	
4-chlorophenylphenylether	0.4	0.740	0.609	0.692	0.621	
4-nitroaniline	0.01	0.306	0.360	0.315	0.296	
Fluorene	0.9	1.434	1.647	1.471	1.470	
4,6-Dinitro-2-methylphenol	0.01	0.079	0.057	0.063	0.047	
Diphenylamine	0.01	0.683	0.897	0.750	0.799	
4-bromophenylphenylether	0.1	0.477	0.332	0.241	0.206	
Hexachlorobenzene	0.1	0.324	0.256	0.283	0.267	
Phenol, pentachloro-	0.05	0.131	0.077	0.064	0.049	
Phenanthrene	0.7	1.125	1.335	1.289	1.275	
Anthracene	0.7	1.270	1.138	1.272	1.347	
Carbazole	0.01	1.070	1.407	1.006	1.156	
Di-n-butyl phthalate	0.01	1.314	1.856	1.517	1.626	
Fluoranthene	0.6	1.263	1.123	1.268	1.234	
Pyrene	0.6	1.072	1.326	1.296	1.487	
Benzyl butyl phthalate	0.01	0.496	0.906	0.677	0.847	
Bis(2-ethylhexyl)phthalate	0.01	0.741	1.225	0.941	1.144	
Chrysene	0.7	1.025	1.110	1.164	1.102	
Benz[a]anthracene	0.8	1.068	1.228	1.171	1.124	
Di-n-octylphthalate	0.01	1.465	2.673	2.084	2.413	
Benzo[b]fluoranthene	0.7	1.364	1.417	1.592	1.432	
Benzo[k]fluoranthene	0.7	1.292	1.185	1.586	1.396	
Benzo[a]pyrene	0.7	1.353	1.420	1.500	1.414	
Indeno[1,2,3-cd]pyrene	0.5	1.600	1.794	1.727	1.866	
Dibenzo[a,h]anthracene	0.4	1.393	1.645	1.472	1.617	
Benzo[g,h,i]perylene	0.5	1.302	1.560	1.406	1.636	

Table 9 (Part 1). Retention times (RT) for the four methods.

Compound	Splitless RT (min)	Split (10:1) RT (min)	Split (10:1) Helium Saver RT (min)	Splitless Helium Saver RT (min)
Pyridine	3.66	3.71	3.66	3.29
N-Nitrosodimethylamine	3.71	3.74	3.68	3.33
2-fluorophenol (surrogate)	5.08	5.07	5.04	4.98
Phenol-d6 (surrogate)	5.96	5.93	5.91	5.92
Phenol	5.97	5.94	5.93	5.92
Aniline	5.98	5.95	5.94	5.92
Bis(2-chloroethyl) ether	6.04	6.00	5.98	5.97
Phenol, 2-chloro-	6.08	6.05	6.03	6.02
Benzene, 1,3-dichloro-	6.20	6.17	6.15	6.14
1,4-Dichlorobenzene-d4	6.23	6.20	6.18	6.17
Benzene, 1,4-dichloro-	6.25	6.21	6.20	6.19
Benzyl alcohol	6.39	6.36	6.34	6.34
Benzene, 1,2-dichloro-	6.42	6.38	6.37	6.36
Phenol, 2-methyl-	6.49	6.46	6.45	6.46
Bis(2-chloroisopropyl)ether	6.51	6.48	6.47	6.46
Phenol, 3&4-methyl-	6.63	6.60	6.59	6.59
N-Nitroso-di-n-propylamine	6.67	6.62	6.60	6.61
Ethane, hexachloro-	6.68	6.65	6.64	6.63
Nitrobenzene-D5 (surrogate)	6.77	6.73	6.72	6.72
Benzene, nitro-	6.79	6.75	6.74	6.74
Isophorone	7.00	6.96	6.94	6.95
Phenol, 2-nitro-	7.06	7.03	7.02	7.02
Phenol, 2,4-dimethyl-	7.09	7.06	7.05	7.06
Bis(2-chloroethoxy)methane	7.18	7.14	7.13	7.13
Phenol, 2,4-dichloro-	7.27	7.23	7.22	7.23
Benzene, 1,2,4-trichloro-	7.33	7.30	7.29	7.29
Naphthalene-d8	7.37	7.34	7.33	7.33
Naphthalene	7.39	7.36	7.35	7.35
p-Chloroaniline	7.46	7.43	7.42	7.42
1,3-Butadiene, 1,1,2,3,4,4-hexachloro-	7.53	7.50	7.49	7.49
Phenol, 4-chloro-3-methyl-	7.87	7.84	7.83	7.84
Naphthalene, 2-methyl	7.99	7.95	7.94	7.95
Naphthalene, 1-methyl-	8.08	8.04	8.03	8.04
Hexachlorocyclopentadiene	8.17	8.13	8.12	8.13
Phenol, 2,4,6-trichloro-	8.25	8.21	8.21	8.22
Phenol, 2,4,5-trichloro-	8.28	8.25	8.24	8.25
2-fluorobiphenyl (surrogate)	8.31	8.27	8.26	8.27
Naphthalene, 2-chloro-	8.41	8.37	8.36	8.37
2-Nitroaniline	8.53	8.49	8.49	8.50
1,4-Dinítrobenzene	8.63	8.59	8.58	8.60
Dimethyl phthalate	8.70	8.66	8.64	8.66
Benzene, 1,3-dinitro-	8.74	8.69	8.68	8.70
2,6-dinitrotoluene	8.77	8.72	8.71	8.73
Acenaphthylene	8.77	8.73	8.72	8.73

Table 9 (Part 2). Retention times (RT) for the four methods.

Compound	Splitless RT (min)	Split (10:1) RT (min)	Split (10:1) Helium Saver RT (min)	Splitless Helium Saver RT (min)
1,2-Dinitrobenzene	8.84	8.80	8.78	8.80
Acenaphthene-d10	8.89	8.85	8.84	8.85
3-Nitroaniline	8.90	8.85	8.84	8.86
Acenaphthene	8.92	8.88	8.87	8.89
2,4-dinitrophenol	8.98	8.93	8.92	8.94
Phenol, 4-nitro-	9.02	8.98	8.97	8.99
Dibenzofuran	9.05	9.01	9.00	9.02
2,4-dinitrotoluene	9.10	9.06	9.04	9.06
Phenol, 2,3,5,6-tetrachloro-	9.15	9.11	9.10	9.12
Phenol, 2,3,4,6-tetrachloro-	9.19	9.15	9.14	9.15
Diethyl Phthalate	9.28	9.23	9.22	9.23
4-chlorophenylphenylether	9.33	9.28	9.28	9.29
Fluorene	9.34	9.30	9.29	9.31
4-nitroaniline	9.43	9.38	9.36	9.38
Diphenylamine	9.45	9.40	9.38	9.40
4,6-Dinitro-2-methylphenol	9.45	9.40	9.39	9.41
Azobenzene	9.46	9.42	9.41	9.42
2,4,6-tribromophenol (surrogate)	9.57	9.52	9.51	9.53
4-bromophenylphenylether	9.73	9.69	9.68	9.69
Hexachlorobenzene	9.87	9.82	9.82	9.83
Phenol, pentachloro-	10.02	9.97	9.97	9.98
Phenanthrene-D10-	10.12	10.08	10.07	10.08
Phenanthrene	10.15	10.10	10.09	10.10
Anthracene	10.19	10.14	10.13	10.14
Carbazole	10.32	10.27	10.27	10.28
Di-n-butyl phthalate	10.60	10.55	10.55	10.56
Fluoranthene	11.15	11.10	11.09	11.10
Pyrene	11.35	11.29	11.29	11.30
p-Terphenyl-d14 (surrogate)	11.46	11.40	11.40	11.41
Benzyl butyl phthalate	11.93	11.87	11.87	11.88
Bis(2-ethylhexyl)adipate	11.95	11.89	11.89	11.90
Bis(2-ethylhexyl)phthalate	12.54	12.48	12.47	12.49
Benz[a]anthracene	12.55	12.48	12.48	12.50
Chrysene-d12	12.57	12.50	12.49	12.52
Chrysene	12.61	12.54	12.53	12.55
Di-n-octylphthalate	13.28	13.21	13.20	13.22
Benzo[b]fluoranthene	13.91	13.83	13.82	13.85
Benzo[k]fluoranthene	13.91	13.83	13.85	13.88
Benzo[a]pyrene	14.35	14.26	14.25	14.29
Perylene-d12	14.40	14.32	14.31	14.34
Indeno[1,2,3-cd]pyrene	15.96	15.83	15.81	15.88
Dibenzo[a,h]anthracene	15.96	15.84	15.83	15.88
Benzo[g,h,i]perylene	16.36	16.24	16.23	16.29

Conclusion

The Thermo Scientific ISQ 7000 single quadrupole GC-MS system with the ExtractaBrite ion source and the innovative NeverVent technology is the perfect solution to perform the EPA 8270D Method.

Thanks to the extended dynamic range detection system, the ISQ 7000 GC-MS system allows you to cover a 0.2–200 ppm range with the same column and liner. Seventy-six compounds were reported, and each fulfilled the EPA 8270D requirements in terms of minimum response factors and linearity.

Chromeleon CDS software, with the Environmental Reporting package, offers unparallel flexibility, scalability, and compliance. It provides compliance with EPA 8270D Method requirements offering a full complement of standard reports including DFTPP Tune Check report, Breakdown report, Internal Standard Summary report, Tentatively Identified Compounds report, various quality control reports for check standards, laboratory control samples, matrix spikes, surrogate recoveries, and more.

The Thermo Scientific Instant Connect Helium Saver Module is a unique tool that can be used to reduce the cost per analysis, without compromising the analytical results. The Helium Saver Module makes laboratories more efficient and environmentally friendly, saving 90% of helium during each run. The ExtractaBrite ion source design, as integrated in the ISQ 7000 GC-MS system, keeps your system cleaner, longer. With heat throughout the ion optics and the patented RF lens, the ISQ 7000 GC-MS system has been proven to be capable to analyze more dirty samples per day, with maximum uptime. Even better, when the instrument finally requires cleaning, the column needs to be replaced or trimmed, or maintenance is required at the injector side, the NeverVent technology offers the user the possibility to operate without venting the MS system, in a very fast and simple way. Why break your workflow when you can have unstoppable productivity?

References

- 1. U.S. EPA. July 2014. Method 8270D (SW-846): Semivolatile Organic Compounds by Gas Chromatography/Mass Spectrometry (GC/MS), Revision 5. https://www.epa.gov/ sites/production/files/2015-12/documents/8270d.pdf, Accessed February 11th, 2018.
- James W. Eichelberger, Lawrence E. Harris, and William L. Budde, Reference Compound to Calibrate Ion Abundance Measurements in Gas Chromatography-Mass Spectrometry Systems, *Anal. Chem.*, **1975**, *47* (7), 995–1000.
- Joseph R. Donnelly, Ion Abundance Criteria for Gas Chromatographic/Mass Spectrometric Environmental Analysis, *J. Assoc. Off. Anal. Chem.*, **1988**, *71* (2), 434–439.
- 4. Yves Tondeur, Warren J. Niederhutl, Joseph E. Campana, Ronald K. Mitchum, G. Wayne Sovocool, Joseph R. Donnelly, Ion Chemistry of a Gas Chromatographic/ Mass Spectrometric Ion Abundance Calibrant, *Biomedical and Environmental Mass Spectrometry Journal of Mass Spectrometry*, **1988**, *15* (8), 429–439.

Find out more at thermofisher.com/ISQ7000

©2018 Thermo Fisher Scientific Inc. All rights reserved. All trademarks are the property of Thermo Fisher Scientific and its subsidiaries. This information is presented as an example of the capabilities of Thermo Fisher Scientific products. It is not intended to encourage use of these products in any manners that might infringe the intellectual property rights of others. Specifications, terms and pricing are subject to change. Not all products are available in all countries. Please consult your local sales representatives for details. **AN10522-EN 0218S**