High Precision Osmium Isotope Analyses

Negative Thermal Ionization Mass Spectrometry and Static Faraday Cup Multicollection

Dietmar Tuttas, Thermo Fisher Scientific, Bremen, Germany

Introduction

The rhenium-osmium geochronometer (187Re decays by beta-emission to 187Os with a half-life of ca 42 Byr) is of significant interest to the geochemical community. Early on, broad use of this chronometer was hindered by the lack of sensitive techniques to precisely measure isotopic abundances in small osmium samples.

In 1989, the group of Heumann (University of Regensburg, Germany) pioneered the analytical efforts in Os isotopic analysis by N-TI-MS (Negative Thermal Ionization Mass Spectrometry) with ion per atom yields of ca. 25% (e.g. Voelkening et al., 1991). Shortly after, the group of Wasserburg (Caltech, USA) and others have improved chemistry and sample loading, with the result that N-TI-MS has evolved into an established tool for radiochronology (e.g. Creaser et al., 1991).

N-TI-MS is a powerful ionization technique for a broad range of elements. Many of the transition metals form negatively charged oxide ions. High ion yields can be obtained for elements with high electron affinities.

The ion current is essentially influenced by the electron work function of the filament material, which can be substantially reduced by covering the filament with, for instance, barium. For osmium analyses, platinum filaments are required. Because platinum very often contains considerable amounts of osmium, rhenium and tungsten, it is essential to use ultra pure platinum material.

Ion currents can be significantly increased by oxygen introduction during sample heat-up and data collection via a viscous flow oxygen bleed inlet system. Because OsO$_3^-$-ions are formed and collected, a correction for the oxygen isotope contribution is required as well. Osmium isotopic fractionation corrections are made using the constant ratio of 187Os/188Os = 3.092203.

Sample amounts in the low nanogram range can be easily analyzed in multicollector Faraday cup operation mode. Using the advantages of single collector or even multiple collector ion counting, sample amounts in the picogram range can be analyzed with excellent precision.

Key Words
- TRITON
- Faraday Mode
- Negative Ions
- Static Mode
- Osmium
- TI-MS

Application

Figure 1. Osmium isotope signals during heat-up procedure and acquisition.

Schematic of the Multi-Collector Configuration

Figure 1. Osmium isotope signals during heat-up procedure and acquisition.
Analysis Parameter

Samples: 1-35 ng of Os loaded onto a platinum filament together with barium nitrate (e.g. Creaser et al, 1991).

Sample Warm-up: performed very slowly while introducing oxygen via bleed system, filament currents around 2000 mA, intensities 500-2500 mV.

Data Acquisition: Negative ion mode at 10 kV, static Faraday ion multicollection mode, channel gains calibrated once. Typically 300 single data collected with an integration time of 10 s. Rhenium interference controlled by measuring 185Re (m/e = 233). Isotopic fractionation correction using 192Os/188Os = 3.092203, followed by oxide correction.

Figure 2. Os isotopic ratios in 3 standards and 1 sample. Errors are 2SE. See Table for details.

All final data corrected for outliers by 2-sigma-criterion. Total sample analysis time 2-3 hours including sample warm-up.

Summary of Different Osmium Isotopic Analyses

<table>
<thead>
<tr>
<th>RUN #</th>
<th>SAMPLE</th>
<th>184Os/188Os 1SE</th>
<th>185Os/188Os 1SE</th>
<th>186Os/188Os 1SE</th>
<th>187Os/188Os 1SE</th>
<th>188Os/188Os 1SE</th>
<th>189Os/188Os 1SE</th>
<th>190Os/188Os 1SE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Std-1 #1 (35ng)</td>
<td>0.001309 1</td>
<td>0.119853 2</td>
<td>0.113807 2</td>
<td>1.219680 5</td>
<td>1.983747 10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Std-1 #2 (35ng)</td>
<td>0.001309 3</td>
<td>0.119853 3</td>
<td>0.113799 3</td>
<td>1.219695 7</td>
<td>1.983746 10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Std-1 #3 (35ng)</td>
<td>0.001306 2</td>
<td>0.119852 2</td>
<td>0.113797 3</td>
<td>1.219689 7</td>
<td>1.983715 7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Std-1 #4 (35ng)</td>
<td>0.001305 1</td>
<td>0.119852 2</td>
<td>0.113796 2</td>
<td>1.219689 6</td>
<td>1.983862 6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Std-2</td>
<td>0.001302 5</td>
<td>0.119832 6</td>
<td>0.107010 16</td>
<td>1.219687 10</td>
<td>1.983660 11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Std-3 #1</td>
<td>0.001308 3</td>
<td>0.119865 3</td>
<td>0.124075 7</td>
<td>1.219668 7</td>
<td>1.983687 8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Std-3 #2</td>
<td>0.001303 4</td>
<td>0.119860 4</td>
<td>0.123972 8</td>
<td>1.219669 8</td>
<td>1.983704 9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Std-3 #3</td>
<td>0.001310 2</td>
<td>0.119863 2</td>
<td>0.123541 2</td>
<td>1.219699 5</td>
<td>1.983721 7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Os AP-5 Sample</td>
<td>0.001315 3</td>
<td>0.119839 3</td>
<td>0.126231 3</td>
<td>1.219707 7</td>
<td>1.983803 9</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Mean of 1SE (internal) 2.7 3.0 4.9 6.9 8.6

Mean of runs 0.001307 (n=9) 0.000004 0.119853 (n=6) 0.000001 0.113800 (n=4) 0.000005 1.219687 (n=9) 0.000013 1.983719 (n=9) 0.000042

1RSD (external) 0.30% 4.8 ppm 43.9 ppm 10.7 ppm 21.2 ppm

Notes: Different samples vary in 186Os and 187Os abundances. The gray shaded fields in the table indicate the statistics calculated based solely on the samples, which appear shaded. Normalization using: 192OsO$_3$/188 OsO$_3$ = 3.092203. Oxide correction using: 17O/16O = 0.0003708, 18O/16O = 0.002045.

References

www.thermoscientific.com/IRMS

Legal Notices: ©2004-2010 Thermo Fisher Scientific Inc. All rights reserved. Calceeb is the trademark of California Institute of Technology. ISO is a trademark of the International Standards Organisation. All other trademarks are the property of Thermo Fisher Scientific Inc. and its subsidiaries. This information is presented as an example of the capabilities of Thermo Fisher Scientific Inc. products. It is not intended to encourage use of these products in any manners that might infringe the intellectual property rights of others. Specifications, terms and pricing are subject to change. Not all products are available in all countries. Please consult your local sales representative for details.