High Sensitivity Laser Ablation MC-ICP MS

Nicholas S. Lloyd,1 Claudia Bouman,1 Johannes B. Schwiekers,1 Steve Shuttleworth2 and John Roy2
1Thermo Fisher Scientific, Bremen, Germany; 2Photon Machines, Redmond, WA, USA

Introduction
High precision Hf isotope ratios can be obtained by simultaneous collection of Hf, Yb and Lu isotopes on Faraday cups. Typically LA spot sizes of 50 μm diameter are required to achieve targets of better than 100 ppm (epsilon unit) external precision (2RSD). However, improved sensitivity would allow small detrital zircon gains to be analyzed, larger zircon crystals to be mapped for heterogeneity, or other accessory minerals with lower analyte concentrations to be analyzed.

The Jet Interface is an option on the Thermo Scientific™ NEPTUNE™ and NEPTUNE™ Plus MC-ICP MS; it is also available on the Thermo Scientific ELEMENT 2/XR™ SC-SF-ICP MS. Previously it has been shown to deliver breakthrough ICP-MS sensitivity for solution samples.1

A 25 μm diameter spot covers just ¼ of the area of a conventional 50 μm diameter spot. In this application note, we demonstrate that precise and accurate Hf isotope ratios can be obtained from the zircon 91500 standard using a 25 μm diameter laser ablation spot size.

Mass Spectrometry
A NEPTUNE Plus MC-ICP MS was equipped with the Jet Interface option for increased sensitivity. The Jet Interface option comprises a high performance interface pump and high sensitivity cones. For desolvated solutions more than 2% of uranium ions can be detected; accurate and precise Hf and Pb isotopes can be acquired for sub-ng solution samples.2 0.4–0.6 L/min Ar gas was mixed with the He carrier gas before the injector.

The collector configuration in Table 1 is possible with the standard NEPTUNE/NEPTUNE Plus MC-ICP-MS moveable Faraday collector array. By measuring $^{173}\text{Yb}/^{171}\text{Yb}$, the ^{156}Yb interference can be accurately corrected ($\beta_{\text{Yb}} \neq \beta_{\text{Hf}}$).

Table 1. Example cup-configuration for Hf isotopes on the NEPTUNE/NEPTUNE Plus MC-ICP MS. $^{179}\text{Yb}/^{177}\text{Yb}$ is measured for accurate ^{176}Yb correction.

<table>
<thead>
<tr>
<th>L4</th>
<th>L3</th>
<th>L2</th>
<th>L1</th>
<th>C</th>
<th>H1</th>
<th>H2</th>
<th>H3</th>
<th>H4</th>
</tr>
</thead>
<tbody>
<tr>
<td>^{171}Yb</td>
<td>^{172}Yb</td>
<td>^{173}Yb</td>
<td>^{174}Yb</td>
<td>^{175}Yb</td>
<td>^{176}Hf</td>
<td>^{177}Hf</td>
<td>^{178}Hf</td>
<td>^{179}Hf</td>
</tr>
</tbody>
</table>

Data were collected with 1.049 s integration times from Faraday cups equipped with 10^{11} Ohm amplifiers (and precisely matched time constants). 1350 W RF power was used, and tuning was either for maximum LA Hf sensitivity or for lower oxide ratios (e.g. 1% LA U/O).

Keywords
NEPTUNE Plus, Laser Ablation, Hf Isotopes, Zircons, High Sensitivity, $^{176}\text{Hf}/^{177}\text{Hf}$, Jet Interface

Goal
This application note demonstrates that high precision $^{176}\text{Hf}/^{177}\text{Hf}$ isotope ratios can now be obtained from 25 μm diameter laser ablation spots.

Methods
Laser Ablation
A Photon Machines Analyte.G2 laser ablation system with HelEx two-volume cell was run at 7 Hz and 6 J/cm² fluence (moderate settings) with a dwell time of 60 seconds for each spot. The excimer laser has a 193 nm wavelength and short pulse-width (ca. 4 ns). 0.9–1.0 L/min He was passed through the LA cell as a carrier gas.
Nitrogen Addition
Nitrogen add gas at a rate of 7–11 mL/min was introduced by a mass flow controller installed in the NEPTUNE Plus MC-ICP MS. Nitrogen gas addition has previously been shown to increase LA sensitivity for most elements.\(^4\)

Data Analysis
Signal data were exported from the Thermo Scientific multicollector software and imported into the Iolite software package.\(^2\) A Hf data reduction scheme was modified so that an external Yb fractionation factor could be used. The Yb fractionation factor was taken as the median value of \(^{173}\text{Yb}/^{171}\text{Yb}\) measured from all runs within each ablation session, as this is more precise than using an internal cycle-by-cycle correction from the low intensity Yb peaks (normalizing ratios\(^6,7\)).

Results
Effect of \(N_2\) Addition
\(N_2\) addition increased LA Hf sensitivity by a factor of 2.4 on average. \(N_2\) addition increased LA Hf sensitivity for both standard cones and for the high sensitivity cones. The optimal rate of \(N_2\) addition was 7–11 mL/min, dependent on tune conditions.

Effect of X Type Skimmer Cone
The X type skimmer cone increased LA Hf sensitivity by another factor of 1.5.

Effect of Jet Type Sample Cone
The Jet type sample cone increased LA Hf sensitivity by another factor of 2.

Cumulative Sensitivity Increase
The cumulative sensitivity increase from \(N_2\) addition and the high sensitivity X type skimmer cone and Jet sample cone is shown in Figure 3. A sensitivity increase of 7.2 times is possible for Hf ions using this combination. The increase is slightly larger for U-Pb.

Matrix Tolerance at High Sensitivity
Figure 1 shows a plot of measured \(^{176}\text{Hf}/^{177}\text{Hf}\) ratios for two different spot sizes. There is no difference in Hf mass fractionation between the 25 and 50 \(\mu\)m diameter spot sizes, corresponding to an increase in matrix loading of 400%.

Conclusions
- \(N_2\) addition increases LA Hf sensitivity on the NEPTUNE Plus MC-ICP MS by a factor of 2.4.
- The Jet Interface option further increases sensitivity for LA Hf by a factor of 3.
- A cumulative sensitivity increase of 7.2 times is possible, whilst maintaining \(^{176}\text{Hf}/^{177}\text{Hf}\) accuracy.
- This increased sensitivity uniquely allows precise and accurate \(^{176}\text{Hf}/^{177}\text{Hf}\) ratios to be obtained from zircons using 25 \(\mu\)m diameter LA spots.
References

Acknowledgements
The data in this application note were presented at the Goldschmidt Conference 2012.8

We would like to thank Matt Horstwood & Randy Parrish (NIGL, British Geological Survey) as well as Mohamed Shaheen & Brian Fryer (University of Windsor, CA).