# Application Note: 496

# Screening in Equine Doping Control Analysis with Ultrahigh Resolution and Accurate Mass

Yves Moulard, Yves Bonnaire, Laboratoire des Courses Hippiques, Verrières-Le Buisson, France; Bénédicte Duretz, Thermo Fisher Scientific, Les Ulis, France; Dennis Nagtalon, Thermo Fisher Scientific, San Jose, CA, USA

# Key Words

- Exactive
- LC/MS
- Orbitrap Technology
- Forensic Toxicology
- ToxID Software

### Introduction

Triple quadrupole or tandem mass analyzers have been used most frequently in the accurate identification, confirmation, and quantitation of prohibited compounds in a single analysis. In addition, ion trap and quadrupole timeof-flight mass analyzers have been useful for screening and confirming results. However, these technologies cannot address the main requirements of equine doping control analysis such as:

- Data re-interrogation
- Analyze and monitor a vast number of compounds
- Fast and easy method development, instrument operation, and data interpretation
- Efficient separation of analytes from interferences present in the matrix
- Highly confident identification of compounds

Here we present a screening approach that uses ultrahigh resolution (R = 50,000) and accurate mass in positive and negative mode for the screening of illicit substances in urine matrix using the Thermo Scientific Exactive benchtop mass spectrometer. More than 120 analytes are screened using this method. Confirmation is made using the exact mass of the analytes in positive and negative mode (if available) and the retention time.

# Goal

To demonstrate a new approach using ultrahigh resolution (> 50,000) and accurate mass for the screening of illicit substances in a urine matrix using the Exactive<sup>™</sup> mass spectrometer, a new high performance benchtop LC/MS instrument equipped with Thermo Scientific Orbitrap technology, for doping control analysis.



Figure 1. Thermo Scientific Exactive high performance benchtop LC/MS system

# **Experimental**

### Sample preparation

Solid phase extraction (SPE) was used for sample pretreatment and clean up. The details of the procedure are described below.

- $\bullet$  To 5 mL of urine add 25  $\mu L$  of hydrocortisone d3 at 10  $\mu g/mL$
- Add 1 mL of phosphate buffer
- Add 50  $\mu L$  of  $\beta$  glucuronidase and 50  $\mu L$  of protease
- Incubate for 1 hour at 55 °C
- Centrifuge at 4,000 rpm for 30 minutes
- Transfer the supernatant to a tube
- Add 5 mL of water
- Condition the C18-HF cartridge with 3 mL of methanol and 3 mL of water
- Load the sample and wash the cartridge with 3 mL of water and 3 mL of hexane
- Elute with 3 mL of a mixture containing dichloromethane and ethanol
- Evaporate to dryness
- $\bullet$  Reconstitute with 100  $\mu L$  of a mixture containing water and acetonitrile (80/20)

### Instrumentation Method

### HPLC conditions

Chromatographic analyses were performed using Shimadzu binary pumps LC-20ADxr (Champs sur Marne, France). The chromatographic conditions were as follows:

| Column:           | Reversed-phase, silica-based C18<br>(3.5 µm, 150 x 2.1 mm) column                                          |      |      |  |  |  |
|-------------------|------------------------------------------------------------------------------------------------------------|------|------|--|--|--|
| Flow rate:        | 0.3 mL/min                                                                                                 |      |      |  |  |  |
| Injection volume: | 10 μL                                                                                                      |      |      |  |  |  |
| Mobile phase:     | <ul><li>A: Water containing 0.1% formic acid</li><li>B: Acetonitrile containing 0.1% formic acid</li></ul> |      |      |  |  |  |
|                   |                                                                                                            |      |      |  |  |  |
| Gradient:         | T(min)                                                                                                     | A(%) | B(%) |  |  |  |
|                   | 0.0                                                                                                        | 80   | 20   |  |  |  |
|                   | 5.0                                                                                                        | 80   | 20   |  |  |  |
|                   | 20.0                                                                                                       | 50   | 50   |  |  |  |
|                   | 25.0                                                                                                       | 0    | 100  |  |  |  |
|                   | 25.2                                                                                                       | 80   | 20   |  |  |  |

80

20

30.0



### Mass Spectrometry conditions

- - -

MS analysis was carried out on an Exactive benchtop mass spectrometer with an electrospray ionization (ESI) source (Figure 1). The MS conditions were as follows: . . .

D 1 ·

| Ion Polarity:                          | Polarity switching scan     |
|----------------------------------------|-----------------------------|
|                                        | dependent experiment        |
| Spray Voltage:                         | 4500 V in positive mode and |
|                                        | -3900 V in negative mode    |
| Sheath gas pressure (N <sub>2</sub> ): | 45 (arbitrary units)        |
| Auxiliary gas pressure $(N_2)$ :       | 3 (arbitrary units)         |
| Capillary temperature:                 | 300 °C                      |
| Resolution:                            | 50,000 (FWHM)               |
| AGC Target Value                       | 500,000                     |

### **Results and Discussion**

The screening method was set up for the identification and confirmation of more than 100 compounds, including anabolic agents, steroids, anesthetics, anti-inflammatory agents, and diuretics, as listed in Table 1

Acquisition was performed using the full MS scan mode with polarity switching and external calibration. All data were reprocessed using 5 ppm mass accuracy. Figure 2 shows the sensitivity obtained for a urine sample spiked with 4 compounds: dexamethasone, flumethasone, triamcinolone acetonide, and triamcinolone. The injected concentrations were 50 pg/mL for dexamethasone and flumethasone and 1 ng/ml for triamcinolone and triamcinolone acetonide. In the positive mode, the analytes were identified as protonated species and in the negative mode, as formate adducts. As data acquired was in full scan MS mode, re-interrogation of the data file, particularly for non-targeted or unknown compounds or metabolites, is easily made possible.

Thousands of real urine samples have been analyzed using this approach. Figure 3 shows an example of a real sample that has been analyzed using this method.

All data have been processed using Thermo Scientific ToxID software. ToxID<sup>™</sup> software for Exactive processes data using the mass accuracy and retention time of the analytes. An example of the automatically generated report can be seen in Figure 4.



Figure 2: Extracted ion chromatograms for dexamethasone, flumethasone, triamcinolone acetonide, and triamcinolone in the positive and negative modes using 5 ppm mass accuracy



Figure 3: Dexamethasone identified in a real sample in positive and negative mode

### Table 1: List of compounds monitored in the screening.

| Index | Compounds                | Index | Compounds                | Index | Compounds                  |
|-------|--------------------------|-------|--------------------------|-------|----------------------------|
| 1     | 20 Beta dihydrocortisol  | 42    | Diazoxide                | 83    | Naftidrofuryl              |
| 2     | 4 Methylamino antypirine | 43    | Dichlorisone             | 84    | Niketamide                 |
| 3     | 5' Hydroxy Omeprazole    | 44    | Diphenydramine           | 85    | Nimesulide                 |
| 4     | Acepromazine             | 45    | Diphylline               | 86    | Nordazepam                 |
| 5     | Acide ethacrynic         | 46    | Etamiphylline            | 87    | Omeprazole                 |
| 6     | Althiazide               | 47    | Etophylline (Etofylline) | 88    | Oxazepam                   |
| 7     | Ambroxol                 | 48    | Fenspiride               | 89    | Oxyphenbutazone            |
| 8     | Amcinonide               | 49    | Fludrocortisone          | 90    | Paramethasone              |
| 9     | Amitryptylline           | 50    | Flufenamic acid          | 91    | Pentoxyphylline            |
| 10    | Antipyrine (phenazone)   | 51    | Flumethasone             | 92    | Petidine (meperidine)      |
| 11    | Beclomethasone           | 52    | Flunisolid               | 93    | Phenobarbital              |
| 12    | Bendroflumethiazide      | 53    | Flunixin                 | 94    | Phenylbutazone             |
| 13    | Benzocaine               | 54    | Fluocinolone acetonide   | 95    | Phenytoin                  |
| 14    | Benzoylecgonine          | 55    | Fluocinonide             | 96    | Piroxicam                  |
| 15    | Benzydamine              | 56    | Fluorometholone          | 97    | Prednisolone               |
| 16    | Betamethasone            | 57    | Fluoroprednisolone       | 98    | Prednisone                 |
| 17    | Budesonide               | 58    | Flurandrenolide          | 99    | Probenicid                 |
| 18    | Buflomedil               | 59    | Fluticasone propionate   | 100   | Procaine                   |
| 19    | Bumetanide               | 60    | Furosemide               | 101   | Prolintane                 |
| 20    | Bupivacaine              | 61    | Guaifenesin              | 102   | Promazine                  |
| 21    | Butorphanol              | 62    | Halcinonide              | 103   | Pyrilamine                 |
| 22    | Caffeine                 | 63    | Hydrochlorothiazide      | 104   | Ranitidine                 |
| 23    | Capsaicine               | 64    | Hydroflumethiazide       | 105   | Sildenafil                 |
| 24    | Carbetapentane           | 65    | Hydroxy Lidocaine        | 106   | Sildenafil hydroxy         |
| 25    | Chlorothiazide           | 66    | Hydroxy Meloxicam        | 107   | Sulindac                   |
| 26    | Chlorpheniramine         | 67    | Hydroxy Piroxicam        | 108   | Tenoxicam                  |
| 27    | Chlorpromazine           | 68    | Hydroxy Tenoxicam        | 109   | Tetracaine                 |
| 28    | Chlorthalidone           | 69    | OH-Triamcinolone Aceto.  | 110   | Tetrahydrogestrinone       |
| 29    | Cimetidine               | 70    | Imipramine               | 111   | Tetramisole                |
| 30    | Clenbuterol              | 71    | Indapamide               | 112   | Theobromine                |
| 31    | Clobetasol               | 72    | Isoflupredone            | 113   | Theophylline               |
| 32    | Cortisol                 | 73    | Ketamine                 | 114   | Timolol                    |
| 33    | Cortisol d3              | 74    | Ketoprofen               | 115   | Tixocortol pivalate        |
| 34    | Cortivazol               | 75    | Ketorolac                | 116   | Tramadol                   |
| 35    | Cyclothiazide            | 76    | Lidocaine                | 117   | Triamcinolone              |
| 36    | Dantrolene               | 77    | Meloxicam                | 118   | Triamcinolone acetonide    |
| 37    | Dantrolene hydroxy       | 78    | Mepivacaine              | 119   | Triamcinolone hexacetonide |
| 38    | Desonide                 | 79    | Meprednisone             | 120   | Trichlormethiazide         |
| 39    | Desoximethasone          | 80    | Methyl phenidate         | 121   | Tripelennamine             |
| 40    | Dexamethasone            | 81    | Metocarbamol             | 122   | Xipamide                   |
| 41    | Diazepam                 | 82    | Morphine                 | 123   | Xylazine                   |



Figure 4: ToxID report - short summary style

### Conclusion

The Exactive high performance LC/MS demonstrates high resolving power (up to 100,000) and precise mass accuracy for easy, routine analysis and data re-interrogation of urine samples for illicit substances in equine doping control analysis.

# offices, Thermo Fisher Scientific maintains a network of representative organizations throughout the w<u>orld.</u>

In addition to these

Finland/Norway/ Sweden +46 8 556 468 00

France +33 1 60 92 48 00 Germany +49 6103 408 1014

India +91 22 6742 9434 Italy +39 02 950 591

+39 02 950 591 Japan +81 45 453 9100

Latin America +1 561 688 8700

Middle East +43 1 333 50 34 0 Netherlands

**New Zealand** +64 9 980 6700

South Africa +27 11 570 1840 Spain

+34 914 845 965 Switzerland

UK +44 1442 233555

**USA** +1 800 532 4752

### www.thermoscientific.com

Legal Notices: ©2016 Thermo Fisher Scientific Inc. All rights reserved. Shimadzu is a trademark of Shimadzu Corporation. All other trademarks are the property of Thermo Fisher Scientific Inc. and its subsidiaries. This information is presented as an example of the capabilities of Thermo Fisher Scientific Inc. products. It is not intended to encourage use of these products in any manners that might infringe the intellectual property rights of others. Specifications, terms and pricing are subject to change. Not all products are available in all countries. Please consult your local sales representative for details.

AN63198\_E 06/16S

