thermo scientific

Reduced injection volume applied to the quantitation of cylindrospermopsin and anatoxin-a in drinking water according to EPA Method 545

Authors

Ali Haghani,¹ Andy Eaton,¹ Neloni Wijeratne,² Claudia Martins²

¹Eurofins Eaton Analytical, Monrovia, CA ²Thermo Fisher Scientific, San Jose, CA

Keywords

Anatoxin-a, cylindrospermopsin, EPA Method 545, TSQ Quantis MS

Goal

To demonstrate a sensitive, accurate, and reliable LC-MS/MS workflow to quantify anatoxin-a and cylindrospermopsin in drinking water according to EPA Method 545, performed at a reduced injection volume to increase method robustness while maintaining the desired levels of sensitivity.

Introduction

Cyanobacteria naturally occur in surface waters. Under certain conditions, such as in warm water containing an abundance of nutrients, they can rapidly form harmful algal blooms (HABs). HABs can produce toxins known as cyanotoxins, which can be harmful to humans and animals. Anatoxin-a (also known as Very Fast Death Factor) is a neurotoxin with acute toxic effects and therefore subjected to monitoring and regulation efforts in several countries, including the United States. Cylindrospermopsin is toxic to liver and kidney tissues. As a result, the United States Environmental Protection Agency (EPA) has developed EPA Method 545¹ for the Unregulated Contaminant

Monitoring Rule 4 (UCMR 4) program, which collects data for contaminants suspected to be present in drinking water but that do not have health-based standards set under the Safe Drinking Water Act (SDWA)². This study demonstrates the performance of the new Thermo Scientific[™] TSQ Quantis[™] triple quadrupole MS platform performance using EPA Method 545: Determination of cylindrospermopsin and anatoxin-a in drinking water by liquid chromatography electrospray ionization tandem mass spectrometry (LC/ESI-MS/MS).

Experimental

Sample preparation and LC/ESI-MS/MS conditions

The sample preparation was based on EPA Method 545. A triple freeze and thaw process was used on 2 mL of sample preserved with 0.1% sodium bisulfate and 0.01% ascorbic acid. The sample was filtered through a 0.2 µm pore size PVDF disposable filter to address the potential presence of intact algal cells in finished water samples. Then, 1 mL of sample was mixed with the phenylalanine-d5 and uracil-d4 internal standards and measured by direct injection-LC/ESI-MS/MS. Mobile phases used were 100 mM acetic acid in water and methanol.

Compounds were detected using the Thermo Scientific[™] UltiMate[™] 3000 LC system in conjunction with a Thermo Scientific[™] TSQ Quantis[™] triple quadrupole mass spectrometer equipped with a heated electrospray ionization source. LC conditions were as stated in the EPA 545 method, and MS experimental conditions are listed in Tables 1 and 2.

Requirements

The EPA has strict requirements that should be met before the analysis of any sample, referred to as the Initial Demonstration of Capability (IDC). These requirements

Table 1. MS source conditions.

Ion Source Parameter	Value
Spray Voltage	3500 V
Sheath Gas	45 Arb
Aux Gas	10 Arb
Sweep Gas	0 Arb
Ion Transfer Tube Temperature	325 °C
Vaporizer Temperature	275 °C

include the demonstration of low background noise, precision by analyzing four laboratory fortified reagent water blanks (LFB) at mid-level, the demonstration of accuracy and, finally, the demonstration of capability necessary to meet the minimum reporting limit (MRL). The percent relative standard deviation (%RSD) of the results of the replicate analyses must be \leq 20%. The average percent recovery for each analyte must be within \pm 30% of the true value. All IDC samples need to be treated as field samples going through the entire method process. For comparability of results using the TSQ Quantis triple quadrupole MS, 5 µL, 10 µL, and 25 µL injections are reported.

Results and discussion

Calibration

The initial calibration was validated by calculating the concentration of each analyte as an unknown against its regression equation. For calibration levels that are \leq MRL, the result for each analyte should be within \pm 50% of the true value. All other calibration points must calculate to be within \pm 30% of their true value. Results for all three injections met the calibration criteria. Figure 1 shows representative calibration curves for all compounds using a 5 µL injection.

Compound	Polarity	Precursor (<i>m/z</i>)	Product (<i>m/z</i>)	Collision Energy (V)	RF Lens (V)
Anatoxin-a	Positive	166	131	18	100
Cylindrospermopsin	Positive	416	176	35	120
Phenylalanine-d5 IS for Anatoxin-a	Positive	171	125	12	80
Uracil-d4 IS for Cylindrospermopsin	Positive	115	98	10	55

Figure 1A. Calibration curves for (top) anatoxin-a and (bottom) cylindrospermospin.

All method blanks exhibited less than 1/3 MRL contamination or carryover (Table 3, Figure 2).

Figure 2. 5 µL blank injection, (A) anatoxin-a, (B) cylindrospermopsin.

Figure 1B. Calibration curves for reproducibility (%RSD) of internal standards with a 5 μL injection.

Table 3. Low background noise for all EPA Method 545 analytes.

Analyte	MRL (µg/L)	¹ / ₃ MRL (μg/L)	5 µL	10 µL	25 µL
Anatoxin-a	0.03	0.01	NF	NF	NF
Cylindrospermopsin	0.09	0.03	NF	NF	NF

NF=Not found

Precision and accuracy

The initial demonstration of precision and accuracy was met by analyzing four extracted LFBs spiked at 10x MRL level, which showed less than 20% RSD and \pm 30% difference (Table 4 and Figure 3).

Analyte	Actual (µg/L)	LFB1 (µg/L)	LFB2 (µg/L)	LFB3 (µg/L)	LFB4 (µg/L)	%Rec	%RSD
5 µL Injection							
Anatoxin-a	0.3	0.315	0.326	0.286	0.29	101%	6%
Cylindrospermopsin	0.9	1.011	0.952	1.182	1.12	118%	10%
IS-Phenylalanine-d5		90%	96%	123%	117%		
IS-Uracil-d4		122%	119%	127%	119%		
10 µL Injection							
Anatoxin-a	0.3	0.297	0.306	0.309	0.309	102%	2%
Cylindrospermopsin	0.9	1.09	0.994	0.992	1.02	114%	4%
IS-Phenylalanine-d5		90%	99%	100%	98%		
IS-Uracil-d4		89%	101%	93%	83%		
25 µL Injection							
Anatoxin-a	0.3	0.347	0.319	0.324	0.315	109%	4%
Cylindrospermopsin	0.9	0.956	0.899	1.072	1.055	111%	8%
IS-Phenylalanine-d5		88%	94%	96%	94%		
IS-Uracil-d4		93%	101%	80%	78%		
IS criteria	50-150%						
%Recovery	70–130%						
%RSD	<20						

Table 4. Precision and accuracy at 10× MRL for all EPA Method 545 analytes.

Figure 3. 5 μL injection volume chromatograms, (A) anatoxin-a, (B) cylindrospermopsin.

MRL confirmation

MRL confirmation was evaluated by fortifying, extracting, and analyzing seven replicate LFBs at the proposed MRL concentration. The mean and the half range (HR) was then calculated. The Prediction Interval of Results (PIR) is defined as

 $PIR = Mean + HR_{PIR}$

where $HR_{PIR} = 3.963s$; s is the standard deviation and 3.963 is a constant value for seven replicates.

The upper and lower limits for the PIR meet the recovery criteria (upper PIR - 150%; lower PIR - 50%) (Table 5).

Tap water analysis

A Monrovia, CA tap water sample (comprised of ground and surface water) was extracted and analyzed using the methodology developed. Results are shown in Table 6.

Analyte	Actual (µg/L)	LFB1 (µg/L)	LFB2 (µg/L)	LFB3 (µg/L)	LFB4 (µg/L)	LFB-5 (µg/L)	LFB-6 (µg/L)	LFB-7 (µg/L)	Lower PIR (%)	Upper PIR (%)
5 µL Injection										
Anatoxin-a	0.03	0.038	0.03	0.031	0.035	0.031	0.029	0.032	66%	149%
Cylindrospermopsin	0.09	0.087	0.104	0.1	0.099	0.106	0.098	0.113	77%	148%
IS-Phenylalanine-d5		134%	133%	129%	125%	127%	131%	127%		
IS-Uracil-d4		122%	119%	127%	119%	126%	125%	118%		
10 µL Injection										
Anatoxin-a	0.03	0.034	0.033	0.035	0.036	0.036	0.037	0.035	99%	135%
Cylindrospermopsin	0.09	0.076	0.091	0.09	0.093	0.096	0.084	0.08	65%	129%
IS-Phenylalanine-d5		111%	130%	129%	130%	129%	129%	129%		
IS-Uracil-d4		105%	112%	111%	110%	115%	113%	116%		
25 µL Injection										
Anatoxin-a	0.03	0.039	0.039	0.041	0.04	0.04	0.042	0.041	120%	149%
Cylindrospermopsin	0.09	0.091	0.1	0.099	0.106	0.102	0.096	0.1	89%	131%
IS-Phenylalanine-d5		105%	105%	105%	104%	101%	105%	101%		
IS-Uracil-d4		103%	101%	102%	103%	106%	111%	110%		
IS criteria	50– 150%									

LFB stands for Fortified Laboratory Blank. PIR stands for Prediction Interval of Results.

Table 6. Monrovia water sample analyzed using the TSQ Quantis triple quadrupole MS.

Analyte	Actual (µg/L)	FS	LFSM	LFSMD	%Rec	%RSD
5 µL Injection						
Anatoxin-a	0.3	0	0.337	0.367	117%	6%
Cylindrospermopsin	0.9	0	0.954	0.966	107%	1%
IS-Phenylalanine-d5			120%	111%		
IS-Uracil-d4			142%	130%		
10 µL Injection						
Anatoxin-a	0.3	0	0.347	0.352	117%	1%
Cylindrospermopsin	0.9	0	1.162	1.085	125%	5%
IS-Phenylalanine-d5			119%	109%		
IS-Uracil-d4			89%	113%		
25 µL Injection						
Date Analyzed			4/7/2017	4/7/2017		
Anatoxin-a	0.3	0	0.35	0.341	115%	2%
Cylindrospermopsin	0.9	0	0.788	0.843	91%	5%
IS-Phenylalanine-d5			96%	87%		
IS-Uracil-d4			122%	107%		
IS criteria	50-150%					
%Recovery	70–130%					
%RSD	<30					

FS stands for Field Sample. LFSM stands for Laboratory Fortified Sample Matrix. LFSMD stands for Laboratory Fortified Sample Matrix Duplicate.

Conclusion

- The TSQ Quantis triple quadrupole MS proved to be sensitive, accurate, reproducible, and reliable in the quantitation of cylindrospermopsin, and anatoxin-a in drinking water according to EPA Method 545.
- Adequate sensitivity was obtained with 5 μL, 10 μL, and 25 μL injection volumes for drinking water matrices. This represents an up to 10-fold reduction in the injection volume than what the EPA is recommending and results in less matrix injected, thereby reducing maintenance of the LC-MS system.

References

- U.S. EPA Method 545: Determination of Cylindrospermopsin and Anatoxin-A in Drinking Water by Liquid Chromatography Electrospray Ionization Tandem Mass Spectrometry (LC/ESI-MS/MS), version 1.0, April 2015.
- U.S. EPA. Monitoring Unregulated Drinking Water Contaminants. https://www.epa.gov/ dwucmr/fourth-unregulated-contaminant-monitoring-rule (accessed April 23, 2017).

Find out more at thermofisher.com/Altis-Quantis

©2017 Thermo Fisher Scientific Inc. All rights reserved. All trademarks are the property of Thermo Fisher Scientific Inc. and its subsidiaries. This information is presented as an example of the capabilities of Thermo Fisher Scientific Inc. products. It is not intended to encourage use of these products in any manners that might infringe the intellectual property rights of others. Specifications, terms and pricing are subject to change. Not all products are available in all countries. Please consult your local sales representative for details. **AN64972-EN 0517S**